Skip to main content
Log in

The influence of thermal processing on microstructure of sol–gel-derived SrSnO3 thin films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline SrSnO3 thin films were fabricated using the aqueous sol–gel process and deposited on the single crystal sapphire (R-Al2O3 and C-Al2O3) and Si substrates by spin coating technique. Two different processing of thermal treatment was explored to produce SrSnO3 thin films of different porosity. The XRD analysis showed that polycrystalline films with preferential growth of SrSnO3 (200) plane were obtained on C-Al2O3 substrates, while films deposited on R-Al2O3 demonstrated a random polycrystalline growth. FE-SEM analysis revealed that the higher porosity of SrSnO3 films can be achieved by introducing additional thermal treatment step during the deposition procedure. The UV–Vis reflectance spectroscopy was used to study the effect of porosity on optical properties of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang P, Liu Q-Z, Su F-H, Liu Q-C, Liu Z, Song W-H, Dai J-M (2013) Mn-doping effects on structural, optical and magnetic properties of BaSn1−x Mn x O3. Acta Phys Sinica 62(2):027101. doi:10.7498/aps.62.027101

    Google Scholar 

  2. Ismail-Beigi S, Walker FJ, Cheong S-W, Rabe KM, Ahn CH (2015) Alkaline earth stannates: the next silicon? APL Mater 3(6):062510. doi:10.1063/1.4921338

    Article  Google Scholar 

  3. Xie J, Shi Y, Zhang F, Li G (2016) CaSnO3:Tb3+, Eu3+: a distorted-perovskite structure phosphor with tunable photoluminescence properties. J Mater Sci 51(16):7471–7479. doi:10.1007/s10853-016-0021-6

    Article  Google Scholar 

  4. Stanulis A, Katelnikovas A, Van Bael M, Hardy A, Kareiva A, Justel T (2016) Photoluminescence of Pr3+-doped calcium and strontium stannates. J Lumin 172:323–330. doi:10.1016/j.jlumin.2015.11.021

    Article  Google Scholar 

  5. Schumann T, Raghavan S, Ahadi K, Kim H, Stemmer S (2016) Structure and optical band gaps of (Ba, Sr)SnO3 films grown by molecular beam epitaxy. J Vac Sci Technol A Vac Surf Films 34(5):050601. doi:10.1116/1.4959004

    Article  Google Scholar 

  6. Ong KP, Fan X, Subedi A, Sullivan MB, Singh DJ (2015) Transparent conducting properties of SrSnO3 and ZnSnO3. APL Mater 3(6):062505. doi:10.1063/1.4919564

    Article  Google Scholar 

  7. Zhang WF, Tang J, Ye J (2006) Photoluminescence and photocatalytic properties of SrSnO3 Perovskite. Chem Phys Lett 418(1–3):174–178. doi:10.1016/j.cplett.2005.10.122

    Article  Google Scholar 

  8. Mizoguchi H, Eng HW, Woodward PM (2004) Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg Chem 43(5):1667–1680. doi:10.1021/ic034551c

    Article  Google Scholar 

  9. Liu H-R, Yang J-H, Xiang HJ, Gong XG, Wei S-H (2013) Origin of the superior conductivity of perovskite Ba(Sr)SnO3. Appl Phys Lett 102(11):112109. doi:10.1063/1.4798325

    Article  Google Scholar 

  10. Liu Q, Dai J, Zhang X, Zhu G, Liu Z, Ding G (2011) Perovskite-type transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films 519(18):6059–6063. doi:10.1016/j.tsf.2011.03.038

    Article  Google Scholar 

  11. Riza MA, Ibrahim MA, Ahamefula UC, Mat Teridi MA, Ahmad Ludin N, Sepeai S, Sopian K (2016) Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part I—Material developments. Sol Energy 137:371–378. doi:10.1016/j.solener.2016.08.042

    Article  Google Scholar 

  12. Chen H, Umezawa N (2014) Sensitization of perovskite strontium stannate SrSnO3 towards visible-light absorption by doping. Int J Photoenergy 2014:3. doi:10.1155/2014/643532

    Google Scholar 

  13. Chen D, Ye J (2007) SrSnO3 nanostructures: synthesis, characterization, and photocatalytic properties. Chem Mater 19(18):4585–4591. doi:10.1021/cm071321d

    Article  Google Scholar 

  14. Zhang W, Tang J, Ye J (2007) Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. J Mater Res 22(7):1859–1871. doi:10.1557/jmr.2007.0259

    Article  Google Scholar 

  15. Shimizu Y, Shimabukuro M, Arai H, Seiyama T (1989) Humidity-sensitive characteristics of La3+-doped and undoped SrSnO3. J Electrochem Soc 136(4):1206–1210. doi:10.1149/1.2096854

    Article  Google Scholar 

  16. Castelli IE, Landis DD, Thygesen KS, Dahl S, Chorkendorff I, Jaramillo TF, Jacobsen KW (2012) New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ Sci 5(10):9034–9043. doi:10.1039/C2EE22341D

    Article  Google Scholar 

  17. Lee CW, Kim DW, Cho IS, Park S, Shin SS, Seo SW, Hong KS (2012) Simple synthesis and characterization of SrSnO3 nanoparticles with enhanced photocatalytic activity. Int J Hydrog Energy 37(14):10557–10563. doi:10.1016/j.ijhydene.2012.04.063

    Article  Google Scholar 

  18. Zhong F, Zhuang H, Gu Q, Long J (2016) Structural evolution of alkaline earth metal stannates MSnO3 (M = Ca, Sr, and Ba) photocatalysts for hydrogen production. RSC Adv 6(48):42474–42481. doi:10.1039/C6RA05614H

    Article  Google Scholar 

  19. Sales HB, Bouquet V, Députier S, Ollivier S, Gouttefangeas F, Guilloux-Viry M, Dorcet V, Weber IT, de Souza AG, dos Santos IMG (2014) Sr1−x Ba x SnO3 system applied in the photocatalytic discoloration of an azo-dye. Solid State Sci 28:67–73. doi:10.1016/j.solidstatesciences.2013.12.007

    Article  Google Scholar 

  20. Junploy P, Thongtem S, Thongtem T (2013) Photoabsorption and photocatalysis of SrSnO3 produced by a cyclic microwave radiation. Superlattices Microstruct 57:1–10. doi:10.1016/j.spmi.2013.01.008

    Article  Google Scholar 

  21. Alves MCF, Boursicot S, Ollivier S, Bouquet V, Députier S, Perrin A, Weber IT, Souza AG, Santos IMG, Guilloux-Viry M (2010) Synthesis of SrSnO3 thin films by pulsed laser deposition: influence of substrate and deposition temperature. Thin Solid Films 519(2):614–618. doi:10.1016/j.tsf.2010.07.092

    Article  Google Scholar 

  22. Qinzhuang L, Bing L, Jianjun L, Hong L, Zhongliang L, Kai D, Guangping Z, Peng Z, Feng C, Jianming D (2012) Structure and band gap tuning of transparent (Ba1−x Sr x )SnO3 thin films epitaxially grown on MgO substrates. EPL Europhys Lett 98(4):47010

    Article  Google Scholar 

  23. Liu QZ, Wang HF, Chen F, Wu W (2008) Single-crystalline transparent and conductive oxide films with the perovskite structure: Sb-doped SrSnO3. J Appl Phys 103(9):093709. doi:10.1063/1.2917413

    Article  Google Scholar 

  24. Kazushige U, Tsuyoshi M, Kensuke N, Katsuhiko G, Yutaka N, Hiroshi T, Kenji N, Koichi K, Hideo H (2008) Photoluminescence from epitaxial films of Perovskite-type alkaline-earth Stannates. Appl Phys Express 1(1):015003

    Article  Google Scholar 

  25. Prathiba G, Venkatesh S, Bharathi KK, Kumar NH (2011) Magnetic and transport properties of transparent SrSn0.9Sb0.05Fe0.05O3 semiconductor films. J Appl Phys 109(7):07C320. doi:10.1063/1.3556693

    Article  Google Scholar 

  26. Wakana H, Kamitani A, Adachi S, Nakayama K, Ishimaru Y, Tarutani Y, Tanabe K (2005) Examination of deposition conditions for SrSnO3 insulating layer for single flux quantum circuits. Phys C Supercond Appl 426:1495–1501. doi:10.1016/j.physc.2005.01.074

    Article  Google Scholar 

  27. Ueda K, Shimizu Y (2010) Fabrication of Tb–Mg codoped CaSnO3 perovskite thin films and electroluminescence devices. Thin Solid Films 518(11):3063–3066. doi:10.1016/j.tsf.2009.09.169

    Article  Google Scholar 

  28. Simon Q, Bouquet V, Perrin A, Guilloux-Viry M (2009) Synthesis of KTa x Nb1−x O3 (KTN) powders and thin films by polymeric precursor method. Solid State Sci 11(1):91–95. doi:10.1016/j.solidstatesciences.2008.06.015

    Article  Google Scholar 

  29. Schwartz RW (1997) Chemical solution deposition of Perovskite thin films. Chem Mater 9(11):2325–2340. doi:10.1021/cm970286f

    Article  Google Scholar 

  30. Alves MCF, Marinho RMM, Casali GP, Siu-Li M, Députier S, Guilloux-Viry M, Souza AG, Longo E, Weber IT, Santos IMG, Bouquet V (2013) Influence of the network modifier on the characteristics of MSnO3 (M = Sr and Ca) thin films synthesized by chemical solution deposition. J Solid State Chem 199:34–41. doi:10.1016/j.jssc.2012.11.014

    Article  Google Scholar 

  31. Menezes de Oliveira AL, Bouquet V, Dorcet V, Ollivier S, Députier S, Gouveia de Souza A, Siu-Li M, Longo E, Távora Weber I, Garcia dos Santos IM, Guilloux-Viry M (2017) Evolution of the structural and microstructural characteristics of SrSn1−x Ti x O3 thin films under the influence of the composition, the substrate and the deposition method. Surf Coat Technol 313:361–373. doi:10.1016/j.surfcoat.2017.01.082

    Article  Google Scholar 

  32. Forgerini FL, Marchiori R (2014) A brief review of mathematical models of thin film growth and surfaces: a possible route to avoid defects in stents. Biomatter 4:e28871. doi:10.4161/biom.28871

    Article  Google Scholar 

  33. Hu J, Shen Z (2012) Grain growth by multiple ordered coalescence of nanocrystals during spark plasma sintering of SrTiO3 nanopowders. Acta Mater 60(18):6405–6412. doi:10.1016/j.actamat.2012.08.027

    Article  Google Scholar 

  34. Arjun N, Yang TC-K, Pan G-T, Yang Y-L, Kareiva A (2016) The study of thermochromic and thermo-optical properties of sol–gel V1−xy W x Si y O2 films by response surface method. J Taiwan Inst Chem Eng 69:151–155. doi:10.1016/j.jtice.2016.10.014

    Article  Google Scholar 

  35. Zarkov A, Stanulis A, Mikoliunaite L, Katelnikovas A, Jasulaitiene V, Ramanauskas R, Tautkus S, Kareiva A (2017) Chemical solution deposition of pure and Gd-doped ceria thin films: structural, morphological and optical properties. Ceram Int 43(5):4280–4287. doi:10.1016/j.ceramint.2016.12.070

    Article  Google Scholar 

  36. Stanulis A, Hardy A, De Dobbelaere C, D’Haen J, Van Bael M, Kareiva A (2012) SnO2 thin films from an aqueous citrato peroxo Sn(IV) precursor. J Sol-Gel Sci Technol 62(1):57–64. doi:10.1007/s10971-012-2683-0

    Article  Google Scholar 

  37. Stanulis A, Sakirzanovas S, Van Bael M, Kareiva A (2012) Sol–gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates. J Sol-Gel Sci Technol 64(3):643–652. doi:10.1007/s10971-012-2896-2

    Article  Google Scholar 

  38. Vailionis A, Boschker H, Siemons W, Houwman EP, Blank DHA, Rijnders G, Koster G (2011) Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys Rev B 83(6):064101

    Article  Google Scholar 

  39. Dobrovinskaya ER, Lytvynov LA, Pishchik V (2009) Sapphire. Micro- and opto-electronic materials, structures, and systems. Springer US. doi:10.1007/978-0-387-85695-7

  40. Brown AS, Spackman MA, Hill RJ (1993) The electron distribution in corundum. A study of the utility of merging single-crystal and powder diffraction data. Acta Crystallogr Sect A 49(3):513–527. doi:10.1107/S0108767392011267

    Article  Google Scholar 

  41. Moreau J-M, Michel C, Gerson R, James WJ (1970) Atomic displacement relationship to rhombohedral deformation in some perovskite-type compounds. Acta Crystallogr Sect B 26(10):1425–1428. doi:10.1107/S0567740870004272

    Article  Google Scholar 

  42. Shimamura S, Sotoike Y (1992) Computer modeling of thermal shock-induced crack growth in brittle materials. J Mater Res 7(5):1286–1291. doi:10.1557/JMR.1992.1286

    Article  Google Scholar 

  43. Talebian N, Nilforoushan MR, Maleki N (2013) Ultraviolet to visible-light range photocatalytic activity of ZnO films prepared using sol–gel method: the influence of solvent. Thin Solid Films 527:50–58. doi:10.1016/j.tsf.2012.11.138

    Article  Google Scholar 

  44. Hoffmann S, Waser R (1999) Control of the morphology of CSD-prepared (Ba, Sr)TiO3 thin films. J Eur Ceram Soc 19(6–7):1339–1343. doi:10.1016/S0955-2219(98)00430-0

    Article  Google Scholar 

  45. Yang W-D, Haile SM (2006) Characterization and microstructure of highly preferred oriented lead barium titanate thin films on MgO (100) by sol-gel process. Thin Solid Films 510(1–2):55–61. doi:10.1016/j.tsf.2005.12.139

    Article  Google Scholar 

  46. Milne SJ, Pyke SH (1991) Modified sol-gel process for the production of lead titanate films. J Am Ceram Soc 74(6):1407–1410. doi:10.1111/j.1151-2916.1991.tb04120.x

    Article  Google Scholar 

  47. Lakeman CDE, Payne DA (1992) Processing effects in the sol-gel preparation of PZT dried gels, powders, and ferroelectric thin layers. J Am Ceram Soc 75(11):3091–3096. doi:10.1111/j.1151-2916.1992.tb04392.x

    Article  Google Scholar 

  48. Deligne N, Lamme J, Devillers M (2011) An easy route to pure and luminescent Eu-doped YVO4 polycrystalline films based on molecular or hybrid precursors. Eur J Inorg Chem 23:3461–3468. doi:10.1002/ejic.201100334

    Article  Google Scholar 

  49. Ding Y, Zhou L, Le Mo, Jiang L, Hu L, Li Z, Chen S, Dai S (2015) TiO2 microspheres with controllable surface area and porosity for enhanced light harvesting and electrolyte diffusion in dye-sensitized solar cells. Adv Funct Mater 25(37):5946–5953. doi:10.1002/adfm.201502224

    Article  Google Scholar 

  50. Liu D-W, Cheng IC, Chen JZ, Chen H-W, Ho K-C, Chiang C-C (2012) Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes. Opt Express 20(S2):A168–A176. doi:10.1364/OE.20.00A168

    Article  Google Scholar 

  51. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B 15(2):627–637. doi:10.1002/pssb.19660150224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stanulis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, E., Stanulis, A., Barushka, Y. et al. The influence of thermal processing on microstructure of sol–gel-derived SrSnO3 thin films. J Mater Sci 52, 12624–12634 (2017). https://doi.org/10.1007/s10853-017-1385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1385-y

Keywords

Navigation