Skip to main content
Log in

Preparation and characterization of poly(ε-caprolactone)/ZnO foams for tissue engineering applications

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fabrication of polymer scaffolds via various preparation procedures generally leads to creation of different morphologies, microstructure and properties. In this work, porous nanocomposite scaffolds of poly(ε-caprolactone) filled with different quantities of ZnO nanoparticles (0.5–5 wt%) were prepared by thermally induced phase separation (TIPS), using freeze-extraction method for solvent removal. The aim of this research was to investigate the influence of the fabrication procedure and the ZnO loadings on the PCL thermal, morphological and bioactivity properties. The TIPS procedure was confirmed to induce significantly high degree of crystallinity (up to 81%) in all investigated scaffolds, besides the nucleation capacity of the nanofiller. The in vitro bioactivity and biodegradability were tested by immersing produced scaffolds in standard simulated body fluid (SBF) for different periods of time (15 and 30 days). Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction were used to assess the variations in scaffolds after their incubation in SBF. No bioactivity was identified for 15 days of immersion, while the mineralization process was confirmed in all investigated scaffolds for the incubated period of 30 days. Thermogravimetric analysis was used to quantify the mineralization properties, confirming best mineralization properties in scaffolds containing lower contents of ZnO nanofiller (0.5 and 1 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposite for tissue engineering: a review. Polym Degrad Stab 95:2126–2146

    Article  Google Scholar 

  2. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Mmanchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  Google Scholar 

  3. Ruiz-Hitzky E, Fernandes FM (2013) Progress in bionanocomposites: from green plastics to biomedical applications. Prog Polym Sci 38:1389–1772

    Article  Google Scholar 

  4. Ali SAM, Zhong SP, Doherty PJ, Williams DF (1993) Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone). Biomaterials 14:648–656

    Article  Google Scholar 

  5. Diba M, Kharaziha M, Fathi MH, Gholipourmlekabadi M, Samadikuchaksaraei A (2012) Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue engineering. Compos Sci Technol 72:716–723

    Article  Google Scholar 

  6. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609

    Article  Google Scholar 

  7. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical application of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864

    Article  Google Scholar 

  8. Seretouidi G, Bikiaris D, Panayiotou C (2002) Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(ε-caprolactone) block copolymers. Polymer 43:5405–5415

    Article  Google Scholar 

  9. Ródenas-Rochina J, Ribelles JL, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Med 24:1293–1308

    Article  Google Scholar 

  10. Cannillo V, Chiellini F, Fabbri P (2010) Production of Bioglass® 45S5—polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92:1823–1832

    Article  Google Scholar 

  11. Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P (2010) Polycaprolactone/hydroxyapatite composite scaffolds: production, characterization, and in vitro and in vivo biological responses of human primary cells. J Biomed Mater Res A 94:241–251

    Article  Google Scholar 

  12. Msdhsvan RV, Rosemary MJ, Nadkumar MA, Krishnan KV, Krishnan LK (2011) Silver nanoparticle impregnated poly(ε-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Part B 17:439–449

    Article  Google Scholar 

  13. Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN, Hofmeister W, Lim CC, Wang X, Sung HJ (2013) Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine 8:1763–1776

    Article  Google Scholar 

  14. Goreham RV, Mierczynska A, Smith LE, Sedev R, Vasilev K (2013) Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv 3:10309–10317

    Article  Google Scholar 

  15. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645

    Article  Google Scholar 

  16. Treccani L, Klein TY, Meder F, Pardun K, Rezwan K (2013) Functionalized ceramics for biomedical and environmental applications. Acta Biomater 9:7115–7150

    Article  Google Scholar 

  17. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrosun polycaprolactone/ZnO nanocomposite membranes as biomaterial with antibacterial and cell adhesion properties. J Polym Res 21:347–364

    Article  Google Scholar 

  18. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv 4:51528–51536

    Article  Google Scholar 

  19. Münchow EA, Albuquerque MTP, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC (2015) Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater 31:1038–1051

    Article  Google Scholar 

  20. Kim J, Mousa HM, Park CH, Kim CS (2017) Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electospinning. Appl Surf Sci 396:249–258

    Article  Google Scholar 

  21. Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140

    Google Scholar 

  22. Ge Z, Jin Z, Cao T (2008) Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed Mater 3:022001. doi:10.1088/1748-6041/3/2/022001

    Article  Google Scholar 

  23. Gualandi C, Govoni M, Foroni L, Valente S, Bianchi M, Giordano E, Pasquinelli G, Biscarini F, Focarete ML (2012) Ethanol disinfection affects physical properties and cell response of electrospun poly(l-lactic acid) scaffolds. Eur Polym J 48:2008–2018

    Article  Google Scholar 

  24. Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138

    Article  Google Scholar 

  25. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A–W. J Biomed Mater Res A 24:721–734

    Article  Google Scholar 

  26. Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3D porous scaffolds: effect of nano-sized filler content on scaffolds properties. Acta Biomater 1:653–662

    Article  Google Scholar 

  27. Crescenzi V, Mancini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463

    Article  Google Scholar 

  28. Peng H, Han Y, Liu T, Tjiu WC, He C (2010) Morphology and thermal degradation behaviour of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim Acta 502:1–7

    Article  Google Scholar 

  29. Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, Li GY (2011) Fabrication and characterization of caprolactone/calcium sulfate whisker composites. Express Polym Lett 5:742–752

    Article  Google Scholar 

  30. Augustine R, Nandakumar K, Thomas S (2016) Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int J Polym Mater 65:28–37

    Article  Google Scholar 

  31. Mandelkern L (2004) Crystallization of polymers: kinetics and mechanisms, vol 2, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Coleman MM, Zarian J (1979) Fourier-transform infrared studies of polymer blends. II. Poly(a-caprolactone)-poly(vinylchloride) system. Polym Sci Polym Phys Ed 17:837–850

    Article  Google Scholar 

  33. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387

    Article  Google Scholar 

  34. He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626

    Article  Google Scholar 

  35. Chen EC, Wu TM (2007) Isothermal crystallization kinetics and thermal behavior of poly(-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab 92:1009–1015

    Article  Google Scholar 

  36. Chen C, Yu B, Liu P, Liu JF, Wang L (2011) Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res 12:420–425

    Google Scholar 

  37. Hu X, Shen H, Yang F, Bei J, Wang S (2008) Preparation and cell affinity of microtubular oriented-structured PLGA(70/30) blood vessel scaffold. Biomaterials 29:3128–3136

    Article  Google Scholar 

  38. Yang F, Qu X, Cui W, Bei J, YuF LuS, Wang S (2006) Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials 27:4923–4933

    Article  Google Scholar 

  39. Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–477

    Article  Google Scholar 

  40. Buzarovska A, Gualandi C, Parrilli A, Scandola M (2015) Effect of TiO2 nanoparticle loading on Poly(l-lactic acid) porous scaffolds fabricated by TIPS. Compos Part B 81:189–195

    Article  Google Scholar 

  41. Bracci B, Panzavolta S, Bigi A (2013) A new simplified calcifying solutions to synthesize calcium phosphate coatings. Surf Coat Technol 232:13–21

    Article  Google Scholar 

  42. Powder Diffraction File n. 9-432, International Center for Diffraction Data (ICDD), Newtown Square, PA USA

  43. Berzina-Cimdina L, Borodajenko N (2012) Research of calcium phosphates using Fourier infrared spectroscopy. In: Theophanidis T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech, pp 123–148

  44. Chang HM, Prasannan A, Tsai HC, Jhu JJ (2014) Ex vivo evaluation of biodegradable poly(e-caprolactone) films in digestive fluids. Appl Surf Sci 313:828–833

    Article  Google Scholar 

  45. Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass nanocomposites. Mater Sci Eng 28:1–10

    Article  Google Scholar 

Download references

Acknowledgements

The author of the paper would like to acknowledge Dr. Zarah Walsh-Korb (University of Strasbourg) for her assistance in performing the SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Bužarovska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bužarovska, A. Preparation and characterization of poly(ε-caprolactone)/ZnO foams for tissue engineering applications. J Mater Sci 52, 12067–12078 (2017). https://doi.org/10.1007/s10853-017-1342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1342-9

Keywords

Navigation