Skip to main content
Log in

A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A molecular dynamics simulation is employed to investigate the effects of nano-SiO2 particles on the properties of polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) blends and demonstrate the interaction mechanism of nano-SiO2 particles in blend systems. Six blend systems with different concentrations of SiO2 particles (0–12.8%) and two interfacial interaction models of polymers on the SiO2 surface were designed and analyzed in terms of density distribution, mechanical properties, fractional free volume, and X-ray diffraction patterns. The incorporation of nano-SiO2 particles into the PVA/PVP blend systems increased their mechanical properties, densities, and semicrystalline character. Density distribution analysis indicated PVA molecular chains are more easily adsorbed on the SiO2 surface than PVP molecular chains. Finally, an analysis of binding energies and pair correlation functions of interfacial interaction models revealed the interaction mechanism of nano-SiO2 particles in PVA/PVP systems. Hydrogen bond interactions between polar functional groups in polymer molecular chains and the hydroxyl groups of the SiO2 surface are involved in adsorption of the polymers on the SiO2 surface and explain why nano-SiO2 particles can significantly influence the properties of PVA/PVP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Penkova AV, Acquah SFA, Dmitrenko ME, Sokolova MP et al (2016) Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles. Mater Des 96:416–423

    Article  Google Scholar 

  2. Morales-Hurtado M, Zeng X, Gonzalez-Rodriguez P, Ten Elshof JE et al (2015) A new water absorbable mechanical epidermal skin equivalent: The combination of hydrophobic PDMS and hydrophilic PVA hydrogel. J Mech Behav Biomed Mater 46:305–317

    Article  Google Scholar 

  3. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233

    Article  Google Scholar 

  4. Choi J, Kung HJ, Macias CE, Muratoglu OK (2012) Highly lubricious poly (vinyl alcohol)-poly (acrylic acid) hydrogels. J Biomed Mater Res B Appl Biomater 100(2):524–532

    Article  Google Scholar 

  5. Biswas A, Willet JL, Gordon SH, Finkenstadt VL et al (2006) Complexation and blending of starch, poly(acrylic acid), and poly(N-vinyl pyrrolidone). Carbohydr Polym 65:397–403

    Article  Google Scholar 

  6. Ma R, Xiong D, Miao F, Zhang J (2009) Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C 29:1979–1983

    Article  Google Scholar 

  7. Shi Y, Xiong D, Liu Y, Wang N et al (2016) Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater Sci Eng C Mater Biol Appl 65:172–780

    Article  Google Scholar 

  8. Wei Q, Zhang Y, Wang Y, Chai W et al (2016) Measurement and modeling of the effect of composition ratios on the properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) membranes. Mater Des 103:249–258

    Article  Google Scholar 

  9. Leone G, Consumi M, Greco G, Bonechi C et al (2011) A PVA/PVP hydrogel for human lens substitution: synthesis, rheological characterization, and in vitro biocompatibility. J Biomed Mater Res Part B Appl Biomater 97B:278–288

    Article  Google Scholar 

  10. Shi Y, Xiong D, Zhang J (2014) Effect of irradiation dose on mechanical and biotribological properties of PVA/PVP hydrogels as articular cartilage. Tribol Int 78:60–67

    Article  Google Scholar 

  11. Mallakpour S, Nouruzi N (2016) Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid-modified ZnO nanoparticles. J Mater Sci 51:6400–6410. doi:10.1007/s10853-016-9936-1

    Article  Google Scholar 

  12. Zhao Y, Wang C (2016) Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Mater Des 97:512–518

    Article  Google Scholar 

  13. Zheng F, Wang S, Wen S, Shen M et al (2013) Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 34:1402–1412

    Article  Google Scholar 

  14. Dodda JM, Belsky P, Chmelar J, Remis T et al (2015) Comparative study of PVA/SiO2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method. J Mater Sci 50:6477–6490. doi:10.1007/s10853-015-9206-7

    Article  Google Scholar 

  15. Dil Ebrahim Jalali (2015) Favis Basil D. Localization of micro and nano- silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer 77:156–166

    Article  Google Scholar 

  16. Yang M, Xia Y, Wang Y, Zhao X et al (2016) Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films. J Appl Polym Sci 133:43489

    Google Scholar 

  17. Malaki M, Hashemzadeh Y, Karevan M (2016) Effect of nano-silica on the mechanical properties of acrylic polyurethane coatings. Prog Organ Coat 101:477–485

    Article  Google Scholar 

  18. Dil EJ, Virgilio N, Favis BD (2016) The effect of the interfacial assembly of nano-silica in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties. Eur Polym J 85:635–646

    Article  Google Scholar 

  19. Fallah S, Nematzadeh M (2017) Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr Build Mater 132:170–187

    Article  Google Scholar 

  20. Pattnaik S, Nethala S, Tripathi A, Saravanan S et al (2011) Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol 49:1167–1172

    Article  Google Scholar 

  21. von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T et al (2008) Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. J Biomed Mater Res 87A:896–902

    Article  Google Scholar 

  22. Siavashani AZ, Nazarpak MH, Fayyazbakhsh F, Toliyat T et al (2016) Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. J Mater Sci 51:10897–10909. doi:10.1007/s10853-016-0301-1

    Article  Google Scholar 

  23. Ghanaati SM, Thimm BW, Unger RE, Orth C et al (2010) Collagen-embedded hydroxylapatite-beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth. Biomed Mater 5:025004

    Article  Google Scholar 

  24. Jin T, Li X, Sun H (2013) Interaction mechanisms between poly(amido-amine) and nano-silicon dioxide. Int J Quantum Chem 113:1213–1224

    Article  Google Scholar 

  25. Zhang Z, Wang S, Zhang J, Zhu W et al (2016) Self-formation of elastomer network assisted by nano-silicon dioxide particles: a simple and efficient route toward polymer nanocomposites with simultaneous improved toughness and stiffness. Chem Eng J 285:439–448

    Article  Google Scholar 

  26. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2008) Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci 110:1739–1749

    Article  Google Scholar 

  27. Lu J, Liu D, Yang X, Zhao Y et al (2015) Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation. Appl Surf Sci 357:1114–1121

    Article  Google Scholar 

  28. Roussou R-E, Karatasos K (2016) Graphene/poly(ethylene glycol) nanocomposites as studied by molecular dynamics simulations. Mater Des 97:163–174

    Article  Google Scholar 

  29. Lai ZB, Wang M, Yan C, Oloyede A (2014) Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces. J Mech Behav Biomed Mater 36:12–20

    Article  Google Scholar 

  30. Naruke Y, Kosaka S, Nakano T, Kikugawa G et al (2015) A molecular dynamics study on mass transport characteristics in the vicinity of SiO2-water/IPA interfaces. Int J Heat Mass Transf 84:584–591

    Article  Google Scholar 

  31. Wei Q, Wang Y, Chai W, Wang T et al (2016) Effects of composition ratio on the properties of poly(vinyl alcohol)/poly (acrylic acid) blend membrane: a molecular dynamics simulation study. Mater Des 89:848–855

    Article  Google Scholar 

  32. Wang Y, Wei Q, Wang S, Chai W et al (2017) Structural and water diffusion of poly(acryl amide)/poly(vinyl alcohol) blend films: Experiment and molecular dynamics simulations. J Mol Graph Model 71:40–49

    Article  Google Scholar 

  33. Wei Q, Wang Y, Che Y, Yang M et al (2017) Molecular mechanisms in compatibility and mechanical properties of polyacrylamide/polyvinyl alcohol blends. J Mech Behav Biomed Mater 65:565–573

    Article  Google Scholar 

  34. Wang Y, Li X, Wei Q, Yang M et al (2015) Study on the mechanical properties of three-dimensional directly binding hydroxyapatite powder. Cell Biochem Biophys 72:289–295

    Article  Google Scholar 

  35. Wei Q, Wang Y, Li X, Yang M et al (2016) Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. J Mech Behav Biomed Mater 57:190–200

    Article  Google Scholar 

  36. Materials Studio Version 5.5 (2010) Accelrys Inc., San Diego, CA

  37. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  Google Scholar 

  38. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2374–2383

    Article  Google Scholar 

  39. Liu J, Cao D, Zhang L (2008) Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes–Einstein law. J Phys Chem C 112:6653–6661

    Article  Google Scholar 

  40. Asghari S, Hatami M, Ahmadipour M (2015) Preparation and investigation of novel PVA/silica nanocomposites with potential application in NLO. Polym Plast Technol Eng 54:192–201

    Article  Google Scholar 

  41. Peng FB, Jiang ZY, Hoek EMV (2011) Tuning the molecular structure, separation performance and interfacial properties of poly(vinyl alcohol)-polysulfone interfacial composite membranes. J Membr Sci 368:26–33

    Article  Google Scholar 

  42. Jawalkar Sheet S, Aminabhavi TM (2007) Molecular dynamics simulations to compute diffusion coefficients of gases into polydimethylsiloxane and poly{(1,5-naphthalene)-co-[1,4-durene-2,2′-bis(3,4-dicarboxyl phenyl)hexafluoropropanediimide]}. Polym Int 56:928–934

    Article  Google Scholar 

  43. Shariatinia Z, Jalali AM, Taromi FA (2016) Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes. Modell Simul Mater Sci Eng 24:035002

    Article  Google Scholar 

  44. Abdelrazek EM, Elashmawi IS, Labeeb S (2010) Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Phys B 405:2021–2027

    Article  Google Scholar 

  45. Xiang Y, Liu Y, Mi B, Leng Y (2014) Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution. Langmuir 30:9098–9106

    Article  Google Scholar 

Download references

Acknowledgements

This project was sponsored by the China Scholarship Council (CSC, 201606290095), the National Natural Science Foundation of China, (Grant No. 51175432), the Fundamental Research Funds for the Central Universities (Grant No. 3102014JCS05007), the key Industrial Science and technology projects of Shaanxi (Grant No. 2015GY047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Zhang, Y., Wang, Y. et al. A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52, 12889–12901 (2017). https://doi.org/10.1007/s10853-017-1330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1330-0

Keywords

Navigation