Skip to main content
Log in

Inorganic graphenylene as a promising novel boron nitrogen membrane for hydrogen purification: a computational study

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel boron nitrogen monolayer named as inorganic graphenylene (IGP) was proposed for H2 purification, and its stability was confirmed by the calculated cohesive energy and phonon dispersion spectrum. Using the density function theory (DFT) calculations and molecular dynamic (MD) simulations, we found that the IGP membrane can fulfill the requirements of both the high H2 permeance (~10−3 mol/m2 s Pa) and high H2 selectivities (>107) over H2O, CO2, N2, CO, and CH4 at 300 K. Excitingly, the MD results matched well with the DFT calculations including the selectivity, permeance as well as the adsorption properties of different gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. PenA MA, Gómez JP, Fierro JLG (1996) New catalytic routes for syngas and hydrogen production. Appl Catal A Gen 144(1–2):7–57

    Article  Google Scholar 

  2. Oetjen HF, Schmidt V, Stimming U, Trila F (1996) Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J Electrochem Soc 143(12):3838–3842

    Article  Google Scholar 

  3. Ockwig NW, Nenoff TM (2007) Membranes for hydrogen separation. Chem Rev 107(10):4078–4110

    Article  Google Scholar 

  4. Pandey P, Chauhan R (2001) membranes for gas separation. Prog Polym Sci 26(6):853–893

    Article  Google Scholar 

  5. Liu G, Jin W, Xu N (2016) Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew Chem Int Ed 55(43):13384–13397

    Article  Google Scholar 

  6. Guan K, Shen J, Liu G, Zhao J, Zhou H, Jin W (2016) Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Sep Purif Technol 174:126–135

    Article  Google Scholar 

  7. Zhu L, Chang X, He D, Xue Q, Xiong Y, Zhang J, Pan X, Xing W (2017) Theoretical study of H2 separation performance of two-dimensional graphitic carbon oxide membrane. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2017.04.043

    Google Scholar 

  8. Oyama S, Lee D, Hacarlioglu P, Saraf R (2004) Theory of hydrogen permeability in nonporous silica membranes. J Membr Sci 244(1):45–53

    Article  Google Scholar 

  9. Hu W, Wu X, Li Z, Yang J (2013) Porous silicene as a hydrogen purification membrane. Phys Chem Chem Phys 15(16):5753–5757

    Article  Google Scholar 

  10. Ma Z, Zhao X, Tang Q, Zhou Z (2014) Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane. Int J Hydrog Energy 39(10):5037–5042

    Article  Google Scholar 

  11. Song Q, Wang B, Deng K, Feng X, Wagner M, Gale JD, Müllen K, Zhi L (2013) Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. J Mater Chem C 1(1):38–41

    Article  Google Scholar 

  12. Zhu L, Jin Y, Xue Q, Li X, Zheng H, Wu T, Ling C (2016) Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation. J Mater Chem A 4(39):15015–15021

    Article  Google Scholar 

  13. Lu R, Rao D, Lu Z, Qian J, Li F, Wu H, Wang Y, Xiao C, Deng K, Kan E (2012) Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous graphene. J Phys Chem C 116(40):21291–21296

    Article  Google Scholar 

  14. Jiao Y, Du A, Smith SC, Zhu Z, Qiao SZ (2015) H2 purification by functionalized graphdiyne-role of nitrogen doping. J Mater Chem A 3(13):6767–6771

    Article  Google Scholar 

  15. Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4(17):5477–5482

    Article  Google Scholar 

  16. Lu R, Meng Z, Rao D, Wang Y, Shi Q, Zhang Y, Kan E, Xiao C, Deng K (2014) A promising monolayer membrane for oxygen separation from harmful gases: nitrogen-substituted polyphenylene. Nanoscale 6(17):9960–9964

    Article  Google Scholar 

  17. Perim E, Paupitz R, Autreto P, Galvao DS (2014) Inorganic graphenylene: a porous two-dimensional material with tunable band gap. J Phys Chem C 118(41):23670–23674

    Article  Google Scholar 

  18. Brunetto G, Autreto P, Machado L, Santos B, Dos Santos RP, Galvao DS (2012) Nonzero gap two-dimensional carbon allotrope from porous graphene. J Phys Chem C 116(23):12810–12813

    Article  Google Scholar 

  19. Zhang H, Tong C-J, Zhang Y, Zhang Y-N, Liu L-M (2015) Porous BN for hydrogen generation and storage. J Mater Chem A 3(18):9632–9637

    Article  Google Scholar 

  20. Hankel M, Searles DJ (2016) Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. Phys Chem Chem Phys 18(21):14205–14215

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  22. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  Google Scholar 

  23. Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49(2):225–232

    Article  Google Scholar 

  24. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Comput Chem 113(22):9901–9904

    Google Scholar 

  25. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  Google Scholar 

  26. Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47(43):11843–11845

    Article  Google Scholar 

  27. Li Y, Liao Y, Chen Z (2014) Be2C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew Chem Int Ed 53(28):7248–7252

    Article  Google Scholar 

  28. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504

    Article  Google Scholar 

  29. Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli CA, Passerone D (2010) Porous graphene as an atmospheric nanofilter. Small 6(20):2266–2271

    Article  Google Scholar 

  30. Zhang Y, Shi Q, Liu Y, Wang Y, Meng Z, Xiao C, Deng K, Rao D, Lu R (2015) Hexagonal boron nitride with designed nanopores as a high-efficiency membrane for separating gaseous hydrogen from methane. J Phys Chem C 119(34):19826–19831

    Article  Google Scholar 

  31. Li F, Qu Y, Zhao M (2015) Efficient helium separation of graphitic carbon nitride membrane. Carbon 95:51–57

    Article  Google Scholar 

  32. Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024

    Article  Google Scholar 

  33. Zhu L, Xue Q, Li X, Jin Y, Zheng H, Wu T, Guo Q (2015) Theoretical prediction of hydrogen separation performance of two-dimensional carbon network of fused pentagon. ACS Appl Mater Interfaces 7(51):28502–28507

    Article  Google Scholar 

  34. Zhu Z (2006) Permeance should be used to characterize the productivity of a polymeric gas separation membrane. J Membr Sci 281(1):754–756

    Article  Google Scholar 

  35. Sun C, Boutilier MS, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou NG (2014) Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30(2):675–682

    Article  Google Scholar 

  36. Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1):390–400

    Article  Google Scholar 

  37. Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn HJ, Bao Y, Yu M (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342(6154):95–98

    Article  Google Scholar 

  38. Yu M, Funke HH, Noble RD, Falconer JL (2011) H2 separation using defect-free, inorganic composite membranes. J Am Chem Soc 133(6):1748–1750

    Article  Google Scholar 

  39. Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S (2016) Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 138(24):7673

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (ZR2015BQ009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianming Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3149 kb)

Appendix: Supplementary material

Appendix: Supplementary material

Phonon dispersion spectrum of the IGP monolayer, mode of the MD simulation box, structural parameters of the IGP monolayer, adsorption states and transition states for the gases passing through the IGP membrane, final configurations of the gases penetrating through the IGP membrane after 2000 ps, H2 selectivities versus H2 permeance of IGP and other membranes as well as Robeson upper bound. Supplementary material related to this article can be found at.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhou, S., Sang, P. et al. Inorganic graphenylene as a promising novel boron nitrogen membrane for hydrogen purification: a computational study. J Mater Sci 52, 10285–10293 (2017). https://doi.org/10.1007/s10853-017-1246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1246-8

Keywords

Navigation