Skip to main content
Log in

Phase transitions, dielectric properties and valence of magnetic ions in PbFe0.5−x Cr x Nb0.5O3 multiferroic ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ceramic PbFe0.5−x Cr x Nb0.5O3 (x = 0.025, 0.05, 0.10, 0.15) perovskite solid solutions are synthesized using a solid-state reaction method. The samples of solid solutions are studied using the methods of X-ray diffraction, dielectric, Mössbauer and X-ray photoelectron spectroscopy, electron microscopy, and X-ray microanalysis. XRD studies have shown that the content of the parasitic pyrochlore phase increases dramatically with x, approaching 50% for x = 0.15. The averaged lattice parameter and the temperature of ferroelectric phase transition decrease monotonically with x. Concentration dependence of the magnetic phase transition temperature for PbFe0.5−x Cr x Nb0.5O3 is very similar to that in the Pb(Fe0.5Nb0.5)1−x M x O3 (M = Ti, Zr, Sn) solid solutions implying the lack of magnetic exchange between Fe3+ and Cr3+ ions. Bulk and surface elemental compositions are found to differ from each other and from nominal composition. XPS studies revealed that the PbFe0.5−x Cr x Nb0.5O3 (x = 0.05, 0.10) samples contain Cr3+, Cr4+, Cr5+, and Cr6+ ions. It is assumed that the presence of Cr5 + and Cr6+ ions is due to the formation of a small amount of non-perovskite phases, e.g., Pb 2+ n Cr6+O3+n and Fe3+Cr5+O4. This assumption is supported by the presence of weak reflections of the Pb2 2+Cr6+O5 phase in the XRD pattern of the composition with x = 0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Khomskii DI (2006) Multiferroics: different ways to combine magnetism and ferroelectricity. J Magn Magn Mater 306:1–8

    Article  Google Scholar 

  2. Kleemann W, Shvartsman VV, Borisov P, Kania A (2010) Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys Rev Lett 105:257202–1–257202-4

    Article  Google Scholar 

  3. Watanabe T, Kohn K (1989) Magnetoelectric effect and low temperature transition of PbFe0.5Nb0.5O3 single crystals. Phase Transit 15:57–68

    Article  Google Scholar 

  4. Laguta VV, Morozovska AN, Eliseev EI, Raevski IP, Raevskaya SI, Sitalo EI, Prosandeev SA, Bellaiche L (2016) Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J Mater Sci 51:5330–5342. doi:10.1007/s10853-016-9836-4

    Article  Google Scholar 

  5. Laguta VV, Stephanovich VA, Raevski IP, Raevskaya SI, Titov VV, Smotrakov VG, Eremkin VV (2017) Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3. Phys Rev B 95:014207

    Article  Google Scholar 

  6. Sanchez DA, Ortega N, Kumar A, Sreenivasulu G, Katiyar RS, Scott JF, Evans DM, Arredondo-Arechavala M, Schilling A, Gregg JM (2013) Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M) x (Zr, Ti)(1−x)O3 [M = Ta, Nb]. J Appl Phys 113:074105-1–074105-7

    Article  Google Scholar 

  7. Puri M, Bahel S, Raevski IP, Narang SB (2016) Structure, dielectric and magnetic properties of (Pb1−x Ca x )(Fe0.5Nb0.5)O3 solid solution ceramics. J Magn Magn Mater 407:195–200

    Article  Google Scholar 

  8. Amonpattaratkit P, Jantaratana P, Ananta S (2015) Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3-based ceramics. J Magn Magn Mater 389:95–100

    Article  Google Scholar 

  9. Raevski IP, Titov VV, Malitskaya MA, Eremin EV, Kubrin SP, Blazhevich AV, Chen H, Chou C-C, Raevskaya SI, Zakharchenko IN, Sarychev DA, Shevtsova SI (2014) Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics. J Mater Sci 49:6459–6466. doi:10.1007/s10853-014-8376-z

    Article  Google Scholar 

  10. Glinchuk MD, Eliseev EA, Morozovska AN (2014) Novel room-temperature multiferroics on the base of single-phase nanostructured perovskites. J Appl Phys 116:054101-1–054101-8

    Article  Google Scholar 

  11. Troyanchuk IO, Bushinsky MV, Chobot AN, Mantytskaya OS, Pushkarev NV, Szymczak R (2008) Crystal-structure and magnetic phase transformations in solid solutions of BiFeO3–AFe0.5Nb0.5O3 (A = Ca, Sr, Ba, Pb). J Exp Theor Phys 107:245–250

    Article  Google Scholar 

  12. Gusev AA, Raevskaya SI, Titov VV, Isupov VP, Avvakumov EG, Raevski IP, Chen H, Chou C-C, Kubrin SP, Titov SV, Malitskaya MA, Sarychev DA, Stashenko VV, Shevtsova SI (2016) Electron microscopy, X-ray diffraction and Mossbauer studies of PbFe0.5Nb0.5O3, PbFe0.5Ta0.5O3 and BaFe0.5Nb0.5O3 ceramics sintered from mechanoactivated nanopowders. Ferroelectrics 496:231–239

    Article  Google Scholar 

  13. Gusev AA, Raevskaya SI, Raevski IP, Isupov VP, Avvakumov EG, Kubrin SP, Chen H, Titov VV, Minasyan TA, Chou C-C, Titov SV, Malitskaya MA (2016) Electron microscopy, XRD, dielectric and Mossbauer studies of Li-doped Pb(Fe0.5Nb0.5)O3 ceramics sintered from mechanically activated powders. Ferroelectrics 496:250–260

    Article  Google Scholar 

  14. Bonny V, Bonin M, Sciau P, Schenk KJ, Chapuis G (1997) Phase transitions in disordered lead iron niobate: X-ray and synchrotron radiation diffraction experiments. Solid State Commun 102:347–352

    Article  Google Scholar 

  15. Singh SP, Yusuf SM, Yoon S, Baik S, Shin N, Pandey D (2010) Ferroic transitions in the multiferroic (1−x)Pb(Fe1/2Nb1/2)O3xPbTiO3 system and its phase diagram. Acta Mater 58:5381–5392

    Article  Google Scholar 

  16. Raevski IP, Kubrin SP, Raevskaya SI, Prosandeev SA, Malitskaya MA, Titov VV, Sarychev DA, Blazhevich AV, Zakharchenko IN (2012) Dielectric and Mössbauer studies of ferroelectric and magnetic phase transitions in A-site and B-site substituted multiferroic PbFe0.5Nb0.5O3. IEEE Trans Ultrason Ferroelectr Freq Control 59(9):1872–1878

    Article  Google Scholar 

  17. Rotaru GM, Roessli B, Amato A, Gvasaliya SN, Mudry C, Lushnikov SG, Shaplygina TA (2009) Spin-glass state and long-range magnetic order in Pb(Fe1/2Nb1/2)O3 seen via neutron scattering and muon spin rotation. Phys Rev B 79:184430-1–184430-5

    Article  Google Scholar 

  18. Laguta VV, Glinchuk MD, Maryško M, Kuzian RO, Prosandeev SA, Raevskaya SI, Smotrakov VG, Eremkin VV, Raevski IP (2013) Effect of the Ba and Ti-doping on the magnetic properties of multiferroic Pb(Fe1/2Nb1/2)O3. Phys Rev B 87:064403-1–064403-8

    Article  Google Scholar 

  19. Shuvaeva VA, Pirog I, Azuma Y, Yagi K, Sakaue K, Terauchi H, Raevskii IP, Zhuchkov K, Antipin MYu (2003) The local structure of mixed-ion perovskites. J Phys Condens Matter 15:2413–2421

    Article  Google Scholar 

  20. Druzhinina NS, Yuzyuk YuI, Raevski IP, El Marssi M, Laguta VV, Raevskaya SI (2012) Raman spectra of PbFe0.5Nb0.5O3 multiferroic single crystals and ceramics. Ferroelectrics 438:107–114

    Article  Google Scholar 

  21. Shuvaeva VA, Raevski IP, Polozhentzev OE, Zubavichus YV, Vlasenko VG, Raevskaya SI, Chen H (2017) The Fe K-edge X-ray absorption study of the local structure of BaFe0.5Nb0.5O3. Mater Chem Phys 193:260–266

    Article  Google Scholar 

  22. Gilleo MA (1960) Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J Phys Chem Solids 13:33–39

    Article  Google Scholar 

  23. Nomura S, Takabayashi H, Nakagawa T (1968) Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3. Jpn J Appl Phys 7:600–604

    Article  Google Scholar 

  24. Raevski IP, Kubrin SP, Raevskaya SI, Sarychev DA, Prosandeev SA, Malitskaya MA (2012) Magnetic properties of PbFe1/2Nb1/2O3: Mossbauer spectroscopy and first-principles calculations. Phys Rev B 85:224412-1–224412-5

    Article  Google Scholar 

  25. Gusev AA, Raevskaya SI, Titov VV, Avvakumov EG, Isupov VP, Raevski IP, Chen H, Chou C-C, Kubrin SP, Titov SV, Malitskaya MA, Blazhevich AV, Sarychev DA, Stashenko VV, Shevtsova SI (2015) Dielectric and Mossbauer studies of Pb(Fe1/2Ta1/2)O3 multiferroic ceramics sintered from mechanoactivated powders. Ferroelectrics 475:41–51

    Article  Google Scholar 

  26. Prosandeev SA, Raevski IP, Raevskaya SI, Chen H (2015) Influence of epitaxial strain on clustering of iron in Pb(Fe1/2Nb1/2)O3 thin films. Phys Rev B 92:220419-1–220419-5

    Article  Google Scholar 

  27. Tomashpolsky YuYa, Venevtsev YuN, Zubova EV, Burdina KP (1971) Pb(Cr1/2Nb1/2)O3—a new perovskite obtained under high pressure. In: Lubimov VN (ed) Solid state physics and chemistry. Karpov NIFHI Publishing House, Moscow (in Russian)

    Google Scholar 

  28. Venevtsev YN (1971) Ferroelectric family of barium titanate. Mater Res Bull 6:1085–1096

    Article  Google Scholar 

  29. Torii Y, Matsumoto H (1975) The formation of cubic Pb(Cr1/2Nb1/2)O3 and hexagonal Ba(Cr1/2Nb1/2)O3. Yogyo-Kyokai-Shi 83:227–232

    Article  Google Scholar 

  30. Ivanov SA, Nordblad P, Tellgren R, Rundlof H, André G, Bourée F (2008) Neutron powder diffraction and magnetic study of perovskites Pb(Mn1/2Nb1/2)O3 and Pb(Mn1/4Fe1/4Nb1/2)O3. Mater Res Bull 43:3074–3087

    Article  Google Scholar 

  31. Kozakov AT, Kochur AG, Googlev KA, Nikolsky AV, Raevski IP, Smotrakov VG, Yeremkin VV (2011) X-ray photoelectron study of the valence state of iron in iron-containing single-crystal (BiFeO3, PbFe1/2Nb1/2O3), and ceramic (BaFe1/2Nb1/2O3) multiferroics. J Electron Spectrosc Relat Phenom 184:16–23

    Article  Google Scholar 

  32. Nomura S, Doi K (1970) PTC effect in Pb(FeNb)1/2O3. Jpn J Appl Phys 9:716

    Article  Google Scholar 

  33. Raevski IP, Kuropatkina SA, Kubrin SP, Raevskaya SI, Titov VV, Sarychev DA, Malitskaya MA, Bogatin AS, Zakharchenko IN (2009) Dielectric and Mossbauer studies of high-permittivity BaFe1/2Nb1/2O3 ceramics with cubic and monoclinic perovskite structures. Ferroelectrics 379:48–54

    Article  Google Scholar 

  34. Ananta S, Thomas NW (1999) Relationships between sintering conditions, microstructure and dielectric properties of lead iron niobate. J Eur Ceram Soc 19:1873–1881

    Article  Google Scholar 

  35. Raevski IP, Kubrin SP, Kovrigina SA, Titov VV, Emelyanov AS, Malitskaya MA, Zakharchenko IN (2010) The effect of PbO nonstoichiometry on dielectric and semiconductive properties of PbFe0.5Nb0.5O3-based ceramics. Ferroelectrics 397:96–101

    Article  Google Scholar 

  36. Sitalo EI, Raevski IP, Lutokhin AG, Blazhevich AV, Kubrin SP, Raevskaya SI, Zakharov YN, Malitskaya MA, Titov VV, Zakharchenko IN (2011) Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3–PbTiO3 ceramics from the morphotropic phase boundary compositional range. IEEE Trans Ultrason Ferroelect Freq Control 58:1914–1918

    Article  Google Scholar 

  37. Bochenek D, Kruk P, Skulski R, Wawrzała P (2011) Multiferroic ceramics Pb(Fe1/2Nb1/2)O3 doped by Li. J Electroceram 26:8–11

    Article  Google Scholar 

  38. Gusev AA, Raevski IP, Avvakumov EG, Isupov VP, Raevskaya SI, Chen H, Titov VV, Chou C-C, Kubrin SP, Titov SV, Malitskaya MA (2015) Dielectric properties of undoped and Li-doped Pb(Fe1/2Nb1/2)O3 ceramics sintered from mechanochemically synthesized powders. Ferroelectrics 475:61–67

    Article  Google Scholar 

  39. Raevski IP, Shonov VYu, Malitskaya MA, Gagarina ES, Smotrakov VG, Eremkin VV (1999) X-ray and dielectric studies of liquid-phase sintered PbB1/2 3+ B1/2 5+O3 ceramics with differing degree of compositional ordering. Ferroelectrics 235:205–210

    Article  Google Scholar 

  40. Raevski IP, Kubrin SP, Raevskaya SI, Stashenko VV, Sarychev DA, Malitskaya MA, Seredkina MA, Smotrakov VG, Zakharchenko IN, Eremkin VV (2008) Dielectric and Mossbauer studies of perovskite multiferroics. Ferroelectrics 373:121–126

    Article  Google Scholar 

  41. Kochur AG, Petrov ID, Schulz J, Wernet Ph (2008) Term-dependent lifetime broadening effect on the 4d photoelectron spectrum of atomic thulium. J Phys B At Mol Opt Phys 41:215002-1–215002-4

    Article  Google Scholar 

  42. Kau R, Petrov ID, Sukhorukov VL, Hotop H (1997) Experimental and theoretical cross sections for photoionization of metastable Xe*(6s 3P2, 3P0) atoms near threshold. Z Phys D 39:267–281

    Article  Google Scholar 

  43. Sukhorukov VL, Yavna SA, Demekhin VF, Lagutin BM (1985) Effect of collective phenomena and environment field on the structure of the 3s level of iron- group elements. Koord Khim (USSR) 11(4):510–515 (in Russian)

    Google Scholar 

  44. Kramida A, Ralchenko Yu, Reader J, (2012) NIST ASD team, NIST atomic spectra database (ver. 5.0). National Institute of Standards and Technology, Gaithersburg. http://physics.nist.gov/asd

  45. Kochur AG, Kozakov AT, Yavna VA, Daniel Ph (2014) Temperature effect on X-ray photoelectron spectra of 3d transition metal ions. J Electron Spectrosc Relat Phenom 195:200–207

    Article  Google Scholar 

  46. Kochur AG, Kozakov AT, Googlev KA, Kubrin SP, Nikolskii AV, Torgashev VI, Bush AA, Shkuratov VY, Shevtsova SL (2015) Valence state of transition metal ions in Co1−x Fe x Cr2O4 (x = 0.1, 0.2, 0.5) ceramics from X-ray photoelectron and Mossbauer spectroscopy data. J Alloys Compd 636:241–248

    Article  Google Scholar 

  47. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys 5:17–26

    Article  Google Scholar 

  48. Costa Marrero J, Suárez-Gómez A, Saniger Blesa J, Calderón-Piñar F (2009) Effect of sintering condition on properties of Cr-doped Pb0.95Sr0.05(Zr0.53Ti0.47)O3 ceramics. Bull Mater Sci 32:381–386

    Article  Google Scholar 

  49. Raevski IP, Reznitchenko LA, Malitskaya MA, Shilkina LA, Lisitsina SO, Raevskaya SI, Kuznetsova EM (2004) NaNbO3-based relaxor. Ferroelectrics 299:95–101

    Article  Google Scholar 

  50. Lei C, Bokov AA, Ye Z-G (2007) Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system. J Appl Phys 101:084105-1–084105-9

    Google Scholar 

  51. Raevskaya SI, Lutokhin AG, Pugachev AM, Raevski IP, Titov VV, Suzdalev DV, Zakharov YuN, Panchenko EM, Prosandeev SA (2012) Bias field effect on the dielectric and pyroelectric response of single crystal of uniaxial relaxor Sr0.75Ba0.25Nb2O6. Ferroelectrics 440:59–66

    Article  Google Scholar 

  52. Raevskaya SI, Titov VV, Raevski IP, Lutokhin AG, Zakharov YuN, Shonov VYu, Blazhevich AV, Sitalo EI, Chen H, Chou C-C, Kovrigina SA, Malitskaya MA (2015) Bias field effect on the dielectric and pyroelectric response of Pb(Fe0.5Ta0.5)O3 relaxor multiferroic ceramics. Ferroelectrics 475:31–40

    Article  Google Scholar 

  53. Raevski IP, Kubrin SP, Laguta VV, Marysko M, Chen H, Raevskaya SI, Titov VV, Chou C-C, Blazhevich AV, Sitalo EI, Sarychev DA, Minasyan TA, Lutokhin AG, Zakharov YuN, Pustovaya LE, Zakharchenko IN, Malitskaya MA (2015) Comparative studies of ferroelectric and magnetic phase transitions in Pb(Fe1/2Nb1/2)O3–PbMO3 (M–Ti, Zr) multiferroic solid solutions. Ferroelectrics 475:20–30

    Article  Google Scholar 

  54. Raevskaya SI, Titov VV, Raevski IP, Kubrin SP, Chen H, Chou C-C, Sarychev DA, Shevtsova SI, Malitskaya MA, Zakharchenko IN (2016) Electron microscopy, XRD, Mossbauer and dielectric studies of Pb(Fe0.5Nb0.5)1−x Sn x O3 multiferroic ceramics. Ferroelectrics 496:213–224

    Article  Google Scholar 

  55. Bokov AA, Bing Y-H, Chen W, Ye Z-G, Bogatina SA, Raevski IP, Raevskaya SI, Sahkar EV (2003) Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics. Phys Rev B 68:052102-1–052102-4

    Article  Google Scholar 

  56. Scott VD, Love G (eds) (1983) Quantitative electron-probe microanalysis. Wiley, New York

    Google Scholar 

  57. Briggs D, Seach MP (eds) (1984) Practical surface analysis by auger and X-ray photoelectron spectroscopy. Wiley, Chichester

    Google Scholar 

  58. Kozakov AT, Kochur AG, Torgashev VI, Googlev KA, Kubrin SP, Trotsenko VG, Bush AA, Nikolskii AV (2016) Bi1−x Ca x FeO3−σ (0 ≤ x ≤ 1) ceramics: crystal structure, phase and elemental composition, and chemical bonding from X-ray diffraction, Raman scattering, Mossbauer, and X-ray photoelectron spectra. J Alloys Compd 664:392–405

    Article  Google Scholar 

  59. Kochur AG, Kozakov AT, Googlev KA, Mikheykin AS, Torgashev VI, Bush AA, Nikolskii AV (2014) Chemical bonding and valence state of 3d-metal ions in Ni1−x Co x Cr2O4 spinels from X-ray diffraction and X-ray photoelectron spectroscopy data. J Electron Spectrosc Relat Phenom 195:208–219

    Article  Google Scholar 

  60. Haber J, Nowotny J, Sikora YI, Stoch J (1984) Electron spectroscopy in studies of surface segregation of Cr in Cr-doped CoO. Appl Surf Sci 17:324–330

    Article  Google Scholar 

  61. Bender B, Williams DB, Notis MR (1980) Investigation of grain boundary segregation in ceramic oxides by analytical scanning transmission electron microscopy. J Am Ceram Soc 63:542–546

    Article  Google Scholar 

  62. Notis MR, Bender B, Williams DB (1981) Stem analysis of segregation and precipitation in impurity—doped nickel oxide (Conference Paper). Grain Boundary Phenomena in Electronic Ceramics, vol 1. Proceedings of a Symposium held during the 82nd Annual Meeting of the American Ceramic Society, Chicago, IL, pp 91–100

  63. Kingery WD (1984) The chemistry of ceramic grain boundaries. Pure Appl Chem 56(12):1703–1714

    Article  Google Scholar 

  64. Flewitt PEJ, Wild RK (2001) Grain boundaries: their microstructure and chemistry. Wiley, New York

    Google Scholar 

  65. Menil F (1985) Systematic trends of the 57Fe Mossbauer isomer shifts in (FeO n ) and (FeF n ) polyhedra. J Phys Chem Solids 46(7):763–789

    Article  Google Scholar 

  66. Goodenough JB (1963) Magnetism and chemical bond. Interscience Publisher (a division of Wiley), New-York

    Google Scholar 

  67. Kochur AG, Kozakov AT, Nikolskii AV, Googlev KA, Pavlenko AV, Verbenko IA, Reznichenko LA, Krasnenko TI (2012) Valence state of the manganese ions in mixed-valence La1−ά Bi β Mn1−γ O3+δ ceramics by Mn 2p and Mn 3s X-ray photoelectron spectra. J Electron Spectrosc Relat Phenom 185:175–183

    Article  Google Scholar 

  68. Kozakov AT, Kochur AG, Reznichenko LA, Shilkina LA, Pavlenko AV, Nikolskii AV, Googlev KA, Smotrakov VG (2013) Single-crystal rare earths manganites La1−xy Bi x A y Mn α Oβ (A = Ba, Pb): crystal structure, composition, and Mn ions valence state. X-ray diffraction and XPS study. J Electron Spectrosc Relat Phenom 186:14–24

    Article  Google Scholar 

  69. Kozakov AT, Kochur AG, Torgashev VI, Bush AA, Shkuratov VY, Kubrin SP, Nikolskii AV, Googlev KA (2013) Chemical bonding in the Bi1−x Sr x FeOy system by X-ray photoelectron and Mössbauer spectroscopy. J Electron Spectrosc Relat Phenom 189:106–115

    Article  Google Scholar 

  70. Ikemoto I, Ishii K, Kinoshita Sh, Kuroda H, Franko MAA, Thomas JMJ (1976) X-ray photoelectron spectroscopic studies of CrO2 and some related chromium compounds. Solid State Chem 17:425–430

    Article  Google Scholar 

  71. Konno H, Tachikawa H, Furusaki A, Furuichi R (1992) Characterization of lanthanum(III) chromium(V) tetraoxide by X-ray photoelectron spectroscopy. Anal Sci 8:641–646

    Article  Google Scholar 

  72. Qiao L, Xiao HY, Heald SM, Bowden ME, Varga T, Exarhos GJ, Biegalski MD, Ivanov IN, Weber WJ, Droubay TC, Chambers SA (2013) The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides. J Mater Chem C 1:4527–4535

    Article  Google Scholar 

  73. Chidambaram D, Haladi GP, Clayton CR (2001) Development of a technique to prevent radiation damage of chromate conversion coating during X-ray photoelectron spectroscopy analysis. Appl Surf Sci 181:283–295

    Article  Google Scholar 

  74. Hüfner S (2003) Photoelectron spectroscopy. Principles and applications. Springer, Berlin

    Book  Google Scholar 

  75. Desimoili E, Malitesta C, Zambonin PG, Riviere JC (1988) An X-ray photoelectron spectroscopic study of some chromium–oxygen systems. Surf Interface Anal 13:173–179

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (Projects 3.6105.2017/8.9 and 3.5346.2017/8.9), and the Russian Foundation for Basic Research (Grant 16-52-00072 Bel_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kochur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related with this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakov, A.T., Kochur, A.G., Nikolskii, A.V. et al. Phase transitions, dielectric properties and valence of magnetic ions in PbFe0.5−x Cr x Nb0.5O3 multiferroic ceramics. J Mater Sci 52, 10140–10155 (2017). https://doi.org/10.1007/s10853-017-1234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1234-z

Keywords

Navigation