Skip to main content
Log in

Mechanical testing of directionally solidified eutectic ceramics (DSECs): specific problems and limitations

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The specific problems of DSECs mechanical testing result from the particularities of these 3-D interconnected eutectic ceramics. First of all, 4-point bending tests ensure pure bending loading, whereas 3 PB tests only lead to a tensile and shear stress combination. Consequently, due to the 3-D microstructure of DSECs, interfaces between the various phases are subjected to a mixed (tensile and shear) loading which makes the interpretation of the results (strength) and of the fracture surfaces, rather difficult. For usual ceramics, biaxial flexure testing offers many advantages over 3- or 4-point beam-bending testing. The coaxial-ring test is free of edge influences (flaws): cracks initiate in the central area and propagate outwardly. However, in the case of DSECs, due to the presence of high internal thermal stresses (especially for ternary eutectics), interfaces can be subjected to a strong radial tensile and shear (near the free surface) stress combination. In the presence of the radial tensile stress resulting from biaxial loading, this internal thermal stress combination can lead to premature crack initiation leading to failure. Specimen machining through grinding leads to the formation of a strongly damaged layer. Annealing of this layer leads to the formation of a rough surface: slightly protruding phases and stress concentrations at the interfaces. The measured strength is ≈20% lower after annealing than that directly after grinding. Concerning the effect of the microstructure size, four representative sizes have been selected in the ≈10 µm to submicrometre range. A classical crack propagation criterion has allowed explaining the corresponding strength values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1997) A ductile ceramic eutectic composite with high strength at 1873K. Nature 389:49–52

    Article  Google Scholar 

  2. Waku Y, Sakata S, Mitani A, Shimizu K, Hasebe M (2002) Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites. J Mater Sci 37:2975–2982. doi:10.1023/A:1016073115264

    Article  Google Scholar 

  3. Hirano K (2005) Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700 °C. J Eur Ceram Soc 25:1191–1199

    Article  Google Scholar 

  4. Waku Y, Sakata S, Mitani A, Shimizu K, Ohtsuka A, Hasebe M (2005) Microstructure and high-temperature strength of Al2O3/Er3Al5O12/ZrO2 ternary melt growth composite. J Mater Sci 40:711–717. doi:10.1007/s10853-005-6311-z

    Article  Google Scholar 

  5. Lee JH, Yoshikawa A, Murayama Y, Waku Y, Hanada S, Fukuda T (2005) Microstructure and mechanical properties of Al2O3/Y3Al5O12/ZrO2 ternary eutectic materials. J Eur Ceram Soc 25:1411–1417

    Article  Google Scholar 

  6. Peña JI, Larson M, Merino RI, de Francisco I, Orera VM, Llorca J, Pastor JY, Martín A, Segurado J (2006) Processing, microstructure and mechanical properties of directionally-solidified Al2O3–Y3Al5O12–ZrO2 ternary eutectics. J Eur Ceram Soc 26:3113–3121

    Article  Google Scholar 

  7. Perrière L, Valle R, Carrère N, Gouadec G, Colomban Ph, Lartigue-Korinek S, Mazerolles L, Parlier M (2011) Crack propagation and stress distribution in binary and ternary directionally solidified eutectic ceramics. J Eur Ceram Soc 31:1199–1210

    Article  Google Scholar 

  8. Gouadec G, Makaoui K, Perrière L, Colomban Ph, Mazerolles L (2012) Ruby micro-piezospectroscopy in GdAlO3/Al2O3(/ZrO2), Er3Al5O12/Al2O3(/ZrO2) and Y3Al5O12/Al2O3(/ZrO2) binary and ternary directionally solidified eutectics. J Eur Ceram Soc 32:2145–2151

    Article  Google Scholar 

  9. Benamara O, Cherif M, Duffar T, Lebbou K (2015) Microstructure and crystallography of Al2O3–Y3Al5O12–ZrO2 ternary eutectic oxide grown by the micropulling down technique. J Cryst Growth 429:27–34

    Article  Google Scholar 

  10. Perrière L, Valle R, Mazerolles L, Parlier M (2008) Crack propagation in directionally solidified eutectic ceramics. J Eur Ceram Soc 28:2337–2343

    Article  Google Scholar 

  11. Parlier M, Valle R, Perrière L, Lartigue-Korinek S, Mazerolles L (2011) Potential of directionally solidified eutectic ceramics for high temperature applications. AerospaceLab AL 03-07:1–13

  12. Perrière L (2008) Elaboration par solidification dirigée et comportement mécanique de céramiques eutectiques à base d’oxydes réfractaires. Rôle de la microstructure sur la fissuration et la déformation plastique à haute température. Doctorate thesis, University of Paris-Est, France

  13. Carroz L, Duffar T (2015) Working point of the EFG process. Cryst Res Technol 50:473–481

    Article  Google Scholar 

  14. Carroz L, Cherif M, Barthaley N, Peirrera J, Duffar T (2015) Crystallization of Al2O3–YAG–ZrO2 eutectic ceramic plates by the EFG technique. In: Proceedings fifth european conference on ‘crystal growth’, Bologna, Italy, September 2015, Italian association of crystallography (AIC) and European, Network of Crystal Growth (ENCG), p 131

  15. Brunet A, Valle R, Vassel A (2000) Intermetallic TiAl-based matrix composites: investigation of the chemical and mechanical compatibility of a protective coating adapted to an alumina fibre. Acta Mater 48:4763–4774

    Article  Google Scholar 

  16. Goto T, Anderson OL (1989) Elastic constants of corundum up to 1825 K. J Geophys Res 94:7588–7602

    Article  Google Scholar 

  17. Ingel P, Lewis D (1988) Elastic anisotropy in zirconia single crystals. J Am Cerm Soc 71:265–271

    Article  Google Scholar 

  18. Terblanche SP (1989) Thermal-expansion coefficients of yttria-stabilized cubic zirconias. J Appl Cryst 22:283–284

    Article  Google Scholar 

  19. McClellan KJ, Sayir H, Heuer AH, Sayir A, Haggerty JS, Sigalovsky J (1993) High-strength, creep-resistant Y2O3-stabilized cubic ZrO2 single crystal fibers. Ceram Eng Sci Proc 14:651–659

    Article  Google Scholar 

  20. Ingel RP, Lewis D, Bender BA, Rice RW (1982) Temperature dependence of strength and fracture toughness of ZrO2 single crystals. J Am Ceram Soc 65:C150–C152

    Article  Google Scholar 

  21. Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1998) High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci 33:1217–1225. doi:10.1023/A:1004377626345

    Article  Google Scholar 

  22. Waku Y (1998) Mechanical properties and thermal stability of oxide eutectic composites at high temperatures. Mater Manuf Process 13:841–858

    Article  Google Scholar 

  23. Nakagawa N, Ohtsubo H, Waku Y, Yugami H (2005) Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. J Eur Ceram Soc 25:1285–1291

    Article  Google Scholar 

  24. Harada Y, Suzuki T, Hirano K, Waku Y (2003) Influence of moisture on ultra-high-temperature tensile creep behavior of in situ single-crystal oxide ceramic alumina/yttrium aluminum garnet eutectic composite. J Am Ceram Soc 86:951–958

    Article  Google Scholar 

  25. ASTM standard C1161–13 (2013) standard test method for flexural strength of advanced ceramics at ambient temperature

  26. ASTM standard C1211–13 (2013) standard test method for flexural strength of advanced ceramics at elevated temperature

  27. de Jayatilaka AS (1979) Fracture of Engineering brittle materials. Applied Science Publishers, Barking

    Google Scholar 

  28. Richerson D, Richerson DW, Lee WE (2006) Modern ceramic engineering: properties, processing, and use in design, 3rd edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  29. British standard, BS EN 658-5:2002 (2002) Advanced technical ceramics–Mechanical properties of ceramic composites at room temperature-Part 5: determination of interlaminar shear strength by short span bend test (three points)

  30. ASTM standard C 1499–05 (2005) standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature

  31. Vitman FF, Bartenev GM, Pukh VP, Tsepkov LP (1962) A method for measuring the strength of sheet glass. Glass and Ceram (Steklo i Keramika) 19:412–414

    Article  Google Scholar 

  32. Schmitt RW, Blank K, Schönbrunn G (1983) Experimentelle Spannungsanalyse zum Doppelringverfahren. Sprechsaal 116:397–405

    Google Scholar 

  33. Timoshenko S (1941) Strength of materials, part II: advanced theory and problems, 2nd edn. D Van Nostrand Company Inc., New York, pp 236–240

    Google Scholar 

  34. ASTM standard C1495–07 (2012) standard test method for effect of surface grinding on flexure strength of advanced ceramics

  35. Southwell RV, Gough HJ (1926) On the concentration of stress in the neighbourhood of a small spherical flaw; and on the propagation of fatigue fractures in “statistically isotropic” materials. Philos Mag S7–1:71–97

    Article  Google Scholar 

  36. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A221:163–198

    Article  Google Scholar 

  37. Petch NJ (1954) The fracture of metals. Prog Met Phys 5:1–52

    Article  Google Scholar 

  38. Christensen A, Carter EA (1998) First-principles study of the surfaces of zirconia. Phys Rev B 58:8050–8064

    Article  Google Scholar 

  39. Sun J, Stirner T, Matthews A (2006) Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α-Cr2O3. Surf Coatings Technol 201:4205–4208

    Article  Google Scholar 

  40. Nikolopoulos P (1985) Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3–Sn, Al2O3–Co systems. J Mater Sci 20:3993–4000. doi:10.1007/BF00552390

    Article  Google Scholar 

  41. Aschauer U, Bowen P, Parker SC (2006) Atomistic modeling study of surface segregation in Nd:yAG. J Am Ceram Soc 89:3812–3816

    Article  Google Scholar 

  42. Alton WJ, Barlow AJ (1967) Temperature dependence of the elastic constants of yttrium aluminium garnet. J Appl Phys 38:3023–3024

    Article  Google Scholar 

  43. CINATRA Program, Céramiques eutectIques pour Nouvelle Aube de Turbine à Rendement Amélioré, Agence Nationale de la Recherche, ANR-12-RMNP-0008 (2013–2016), http://www.agence-nationale-recherche.fr/?Projet=ANR-12-RMNP-0008

  44. Londaitzbehere L, Lartigue-Korinek S, Mazerolles L (2017) Microstructure, interfaces and creep behaviour of Al2O3–Sm2O3 (ZrO2) eutectic ceramic composites. J Mater Sci 52:5489–5502. doi:10.1007/s10853-016-0726-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors have to mention that ONERA is involved in a recent National Research Program initiated by SAFRAN and under its coordination (Dr. M. Podgorski, SAFRAN TECH). This project [43], labelled by the Materalia competitiveness cluster, is aimed at developing new manufacturing processes such as edge-defined film-fed growth (EFG) [13, 14], selecting new and more efficient compositions [44] … ONERA is in charge of thermomechanical and chemical (resistance to water vapour corrosion) characterisation. The financial support from SAFRAN TECH, especially for the ultrasonic machining of beam flexure specimens, was greatly appreciated and is gratefully acknowledged. The fully articulated 4-point flexure fixture was designed (M. Bejet) and built at ONERA, and the flexure tests were performed at ONERA (A. Mavel and C. Le Sinq); these careful contributions have to be acknowledged. Finally, the authors would like to thank Dr. N. Carrère and Dr. F. Laurin for their kind cooperation and for fruitful discussions and to mention the long and tight collaboration they have with Prof. L. Mazerolles, Dr. L. Perrière and Dr. S. Lartigue-Korinek from CNRS-ICMPE Laboratory (Thiais, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Valle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, R., Carroz, L., Ritti, MH. et al. Mechanical testing of directionally solidified eutectic ceramics (DSECs): specific problems and limitations. J Mater Sci 52, 10047–10061 (2017). https://doi.org/10.1007/s10853-017-1203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1203-6

Keywords

Navigation