Skip to main content
Log in

Well-oriented bioarchitecture for immobilization of chloroperoxidase on graphene oxide nanosheets by site-specific interactions and its catalytic performance

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chloroperoxidase (CPO) was immobilized on graphene oxide (GO) nanosheets via site-specific interactions of concanavalin (ConA) with saccharide groups on the CPO surface to make GO-ConA-CPO nano-architectonics. Enzymatic oxidative decolorization of malachite green was used to investigate the catalytic performance of GO-ConA-CPO. The GO-ConA-CPO showed high activity (based on the decolorization efficiency), i.e., 93.68% in 15 min. Moreover, GO-ConA-CPO showed better thermostability and remained higher activity against pH change and high concentrations of oxidant H2O2 compared with GO-CPO and the free enzyme. When incubated at 60 °C for 1.5 h, 63.02% of the activity of GO-ConA-CPO and 35.75% of GO-CPO remained compared with that at 25 °C, while free CPO remained only 8.46% in the same condition. The tolerance of GO-ConA-CPO to H2O2 improved from 2.5 to 6 mmol L−1, and the suitable pH range enlarged from 2.5–3.0 to 2.0–4.5. After 8 cycles, the GO-ConA-CPO can keep 52% activity of that in the first run. The enzymatic kinetic constants indicated that introducing CPO into GO-ConA-CPO bioarchitecture improved the diffusion of reactants and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Scheme 2
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhou L, Jiang Y, Gao J, Zhao X, Ma L (2012) Graphene oxide as a matrix for the immobilization of glucose oxidase. Appl Biochem Biotechnol 168(6):1635–1642

    Article  Google Scholar 

  2. Zhou L, Jiang Y, Gao J, Zhao X, Ma L, Zhou Q (2012) Oriented immobilization of glucose oxidase on graphene oxide. Biochem Eng J 69(1):28–31

    Article  Google Scholar 

  3. Li Q, Fan F, Wang Y, Feng W, Ji P (2013) Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Ind Eng Chem Res 52(19):6343–6348

    Article  Google Scholar 

  4. Pavlidis IV, Vorhaben T, Tsoufis T, Rudolf P, Bornscheuer UT, Gournis D, Stamatis H (2012) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol 115(5):164–171

    Article  Google Scholar 

  5. Sakata M, Funatsu A, Sonoda S, Ogata T, Taniguchi T, Matsumoto Y (2012) Immobilization of trypsin on graphene oxide nanosheets for increased proteolytic Stability. Chem Lett 41(12):1625–1627

    Article  Google Scholar 

  6. Zhang F, Zheng B, Zhang J, Huang X, Liu H, Guo S, Zhang J (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114(18):8469–8473

    Article  Google Scholar 

  7. Shen J, Shi M, Yan B, Ma H, Li N, Hu Y, Ye M (2010) Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf B 81(2):434–438

    Article  Google Scholar 

  8. Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S (2012) Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8(1):154–159

    Article  Google Scholar 

  9. Campbell AS, Dong C, Meng F, Hardinger J, Perhinschi G, Wu N, Dinu CZ (2014) Enzyme catalytic efficiency: a function of bio–nano interface reactions. ACS Appl Mater Interfaces 6(8):5393–5403

    Article  Google Scholar 

  10. Malnar I, Sih CJ (2000) Chloroperoxidase-catalyzed chlorination of didechloroaglucovancomycin and vancomycin. J Mol Catal B Enzyme 10(6):545–549

    Article  Google Scholar 

  11. Sanfilippo C, Nicolosi G, Patti A (2000) Asymmetric oxidation of 1,3-cyclohexadiene catalysed by chloroperoxidase from caldariomyces fumago. Tetrahedron Asymmetry 11(16):3269–3272

    Article  Google Scholar 

  12. Hager LP, Lakner FJ, Basavapathruni A (1998) Chiral synthons via chloroperoxidase catalysis. J Mol Catal B Enzyme 5(5):95–101

    Article  Google Scholar 

  13. Dexter AF, Lakner FJ, Campbell RA, Hager LP (1995) Cheminform abstract: highly enantioselective epoxidation of 1,1-disubstituted alkenes catalyzed by chloroperoxidase. J Am Chem Soc 117(23):6412–6413

    Article  Google Scholar 

  14. Lakner FJ, Cain KP, Hager LP (1997) Enantioselective epoxidation of ω-bromo-2-methyl-1-alkenes catalyzed by chloroperoxidase. J Am Chem Soc 119(2):443–444

    Article  Google Scholar 

  15. Wu J, Liu C, Jiang Y, Hu M, Li S, Zhai Q (2010) Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. Catal Commun 11(8):727–731

    Article  Google Scholar 

  16. Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71(3):276–288

    Article  Google Scholar 

  17. Zhang J, Feng M, Jiang Y, Hu M, Li S, Zhai Q (2012) Efficient decolorization/degradation of aqueous azo dyes using buffered H2O2 oxidation catalyzed by a dosage below ppm level of chloroperoxidase. Chem Eng J 191(19):236–242

    Article  Google Scholar 

  18. Li X, Zhang J, Jiang Y, Hu M, Li S, Zhai Q (2013) Highly efficient biodecolorization/degradation of congo red and alizarin yellow r by chloroperoxidase from caldariomyces fumago: catalytic mechanism and degradation pathway. Ind Eng Chem Res 52(38):13572–13579

    Article  Google Scholar 

  19. Liu L, Zhang J, Tan Y, Jiang Y, Hu M, Li S, Zhai Q (2014) Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: catalytic mechanism, analysis of products and degradation route. Chem Eng J 244(10):9–18

    Article  Google Scholar 

  20. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 functional hybrid. Structure 3(12):1367–1378

    Article  Google Scholar 

  21. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124(22):6378–6382

    Article  Google Scholar 

  22. Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of crystalline glycoprotein. J Biol Chem 241(8):1763–1768

    Google Scholar 

  23. Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241(8):1769–1777

    Google Scholar 

  24. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19(18):2710–2714

    Article  Google Scholar 

  25. Muñoz-Guerrero FA, Águila S, Vazquez-Duhalt R, Torres CC, Campos CH, Alderete JB (2016) Biocatalytic performance of chloroperoxidase from caldariomyces fumago immobilized onto TiO2 based supports. Top Catal 59(2):387–393

    Article  Google Scholar 

  26. Wang W, Xu Y, Wang DIC, Li Z (2009) Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. J Am Chem Soc 131(36):12892–12893

    Article  Google Scholar 

  27. Bayramoğlu G, Kiralp S, Yilmaz M, Toppare L, Arıca MY (2008) Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability. Biochem Eng J 38(2):180–188

    Article  Google Scholar 

  28. Han YJ, Watson JT, Stucky GD, Butler A (2002) Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. J Mol Catal B Enzyme 17(1):1–8

    Article  Google Scholar 

  29. Aoun S, Baloulene MCC (1998) Noncovalent immobilization of chloroperoxidase onto talc: catalytic properties of a new biocatalyst. Enzyme Microb Technol 23(6):380–385

    Article  Google Scholar 

  30. Roberge C, Amos D, Pollard D, Devine P (2009) Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance. J Mol Catal B Enzyme 56(1):41–45

    Article  Google Scholar 

  31. Bayramoglu G, Altintas B, Yilmaz M, Arica MY (2011) Immobilization of chloroperoxidase onto highly hydrophilic polyethylene chains via bio-conjugation: catalytic properties and stabilities. Bioresour Technol 102(2):475–482

    Article  Google Scholar 

  32. Park JB, Clark DS (2006) Deactivation mechanisms of chloroperoxidase during biotransformations. Biotechnol Bioeng 93(6):1190–1195

    Article  Google Scholar 

  33. Grey CE, Hedström M, Adlercreutz P (2007) A mass spectrometric investigation of native and oxidatively inactivated chloroperoxidase. ChemBioChem 8(9):1055–1062

    Article  Google Scholar 

  34. Matteis LD, Germani R, Mancini MV, Renzo FD, Spreti N (2015) Encapsulation of chloroperoxidase in novel hybrid polysaccharide-silica biocomposites: catalytic efficiency, re-use and thermal stability. Appl Catal A Gen 492:23–30

    Article  Google Scholar 

  35. Aburto J, Ayala M, Bustos-Jaimes I, Montiel C, Terrés E, Domínguez JM, Torres E (2005) Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous Mesopororus Mat 83(1–3):193–200

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21176150) the Fundamental Research Funds for the Central Universities (GK201701003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Cui, R., Hu, M. et al. Well-oriented bioarchitecture for immobilization of chloroperoxidase on graphene oxide nanosheets by site-specific interactions and its catalytic performance. J Mater Sci 52, 10001–10012 (2017). https://doi.org/10.1007/s10853-017-1202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1202-7

Keywords

Navigation