Skip to main content

Advertisement

Log in

Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, the synthesis, by means of the sol–gel method, of calcium-deficient hydroxyapatite and Tb-doped calcium-deficient hydroxyapatite with dopant content of 10 and 12 wt% is reported. The synthesized samples exhibit diffraction patterns and structural characteristics consistent with those reported in the literature for synthetic hydroxyapatite. The results of the chemical characterization show that the synthesized samples are suitable for biomedical applications, and the incorporation of Tb3+ in the host structure occurs both substitutional and by dopant insertion in calcium vacancy sites. In addition, using spectroscopic techniques, the values of the valence band, optical band gap energies, and luminescent response were determined for all samples, concluding that the increase in dopant has the consequence of decreasing the value of the optical band gap, as it was expected; However, it is also observed that the maximum luminescent emission is obtained for the sample synthesized with 10 wt% of terbium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nasr-Esfahani M, Fekri S (2012) Alumina/TiO2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air. Reac Kinet Mech Cat 107(1):89–103

    Article  Google Scholar 

  2. Stošić D, Bennici S, Sirotin S, Calais C, Couturier J-L, Dubois J-L et al (2012) Glycerol dehydration over calcium phosphate catalysts: effect of acidic–basic features on catalytic performance. Appl Catal A General 447–448:124–134

    Google Scholar 

  3. Godfrey-Smith DI, Pass BA (1997) A new method of retrospective biophysical dosimetry: optically stimulated luminescence and fluorescence in dental enamel. Health Phys 72(3):390–396

    Article  Google Scholar 

  4. Ziaie F, Hajiloo N, Alipour A, Amraei R, Mehtieva SI (2011) Retrospective dosimetry using synthesized nano-structure hydroxyapatite. Radiat Prot Dosim 145(4):377–384

    Article  Google Scholar 

  5. Salah TA, Mohammad AM, Hassan MA, El-Anadouli BE (2014) Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J Taiwan Inst Chem Eng 45(4):1571–1577

    Article  Google Scholar 

  6. Pandi K, Viswanathan N (2014) Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption. Carbohydr Polym 112:662–667

    Article  Google Scholar 

  7. Reyes Cervantes E, González Torres M, Vargas Muñoz S, Rubio Rosas E, Vázquez C, Rodríguez Talavera R (2016) Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials. Mater Sci Eng, C 58:614–621

    Article  Google Scholar 

  8. Dholakiya BZ (2009) Use of non-traditional fillers to reduce flammability of polyester resin composites. Polimeri 30(1):10–17

    Google Scholar 

  9. Raizda P, Gautam S, Priya B, Singh P (2016) Preparation and photocatalytic activity of hydroxyapatite supported BiOCl nanocomposite for oxytetracyline removal. Adv Mater Lett 7(4):312–318

    Article  Google Scholar 

  10. Tsukada M, Wakamura M, Yoshida N, Watanabe T (2011) Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: comparison with anatase-TiO2. J Mol Catal A: Chem 338(1):18–23

    Google Scholar 

  11. Shen Y, Liu J, Lin K, Zhang W (2012) Synthesis of strontium substituted hydroxyapatite whiskers used as bioactive and mechanical reinforcement material. Mater Lett 70:76–79

    Article  Google Scholar 

  12. Lee K-W, Wang S, Yaszemski MJ, Lu L (2008) Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials 29(19):2839–2848

    Article  Google Scholar 

  13. Varela Caselis JL, Reyes Cervantes E, Landeta Cortés G, Agustín Serrano R, Rubio Rosas E (2014) Hydroxyapatite growth on cotton fibers modified chemically. Mater Sci Pol 32(3):436–441

    Article  Google Scholar 

  14. Wang Yuan, Chang Huiqin, Jia Lei, Zhu Taofeng, Zhouqing Xu, Zhou Tao, Li Huijun, Li Zhongyue, Jun Xu (2015) Development of a visible-light-sensitized THA-based lanthanide nanocomposite for cell imaging. Mater Lett 161:644–647

    Article  Google Scholar 

  15. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UGK, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178

    Article  Google Scholar 

  16. Deshmukh K, Shaik MM, Ramanan SR, Kowshik M (2016) Self-activated fluorescent hydroxyapatite nanoparticles: a promising agent for bioimaging and biolabeling. ACS Biomater Sci Eng 2(8):1257–1264

    Article  Google Scholar 

  17. Šupová M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231

    Article  Google Scholar 

  18. Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R (2008) Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem 18:4079–4084

    Article  Google Scholar 

  19. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  Google Scholar 

  20. Cawthray JF, Creagh AL, Haynes CA, Orvig C (2015) Ion exchange in hydroxyapatite with lanthanides. Inorg Chem 54:1440–1445

    Article  Google Scholar 

  21. Li X, Zeng H, Teng L, Chen H (2014) Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals. Mater Lett 125:78–81

    Article  Google Scholar 

  22. Sun Ruixue, Chen Kezheng, Xiangfeng Wu, Zhao Dandan, Sun Zhenzong (2013) Controlled synthesis and enhanced luminescence of europium-doped fluorine-substituted hydroxyapatite nanoparticles. Cryst Eng Comm 15:3442–3447

    Article  Google Scholar 

  23. Escudero A, Calvo ME, Rivera-Fernández S, de la Fuente JM, Ocaña M (2013) Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir 29:1985–1994

    Article  Google Scholar 

  24. Kong D, Xiao X, Qiu X, Zhang W, Hu Y, Zhang S, Yang Y (2015) Synthesis and characterization of europium ions doping of hydroxyapatite nanorods by the simple two step method. Funct Mater Lett 8(6):1550075

    Article  Google Scholar 

  25. Kaygili O, Dorozhkin SV, Keser S (2014) Synthesis and characterization of Ce-substituted hydroxyapatite by sol–gel method. Mater Sci Eng, C 42:78–82

    Article  Google Scholar 

  26. Ciobanu G, Bargan AM, Luca C (2015) New cerium(IV)-substituted hydroxyapatite nanoparticles: preparation and characterization. Ceram Int 41:12192–12201

    Article  Google Scholar 

  27. Sathishkumar S, Karthika A, Surendiran M, Kavitha L, Gopi D (2014–2015) Electrodeposition of cerium substituted hydroxyapatite coating on passivated surgical grade stainless steel for biomedical application. Int J Chem Tech Res 7(2):533–538

  28. Ciobanu CS, Popa CL, Predoi D (2016) Cerium-doped hydroxyapatite nanoparticles synthesized by the co-precipitation method. J Serb Chem Soc 81(4):433–446

    Article  Google Scholar 

  29. Li Ling, Liu Yukan, Tao Jinhui, Zhang Ming, Pan Haihua, Xurong Xu, Tang Ruikang (2008) Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. J Phys Chem C 112:12219–12224

    Article  Google Scholar 

  30. Han Y, Wang X, Li S, Ma X (2009) Synthesis of terbium doped calcium phosphate nanocrystalline powders by citric acid sol–gel combustion method. J Sol-Gel Sci Technol 49:125–129

    Article  Google Scholar 

  31. Alshemary AZ, Akram M, Goh YF, Abdul Kadir MR, Abdolahi A, Hussain R (2015) Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J Alloys Compd 645:478–486

    Article  Google Scholar 

  32. Graeve OA, Kanakala R, Madadi A, Williams BC, Glass KC (2010) Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions. Biomaterials 31:4259–4267

    Article  Google Scholar 

  33. Pemba-Mabiala JM, Lenzi M, Lenzi J, Lebugle A (1990) XPS study of mixed cerium–terbium orthophosphate catalysts. Surf Interface Anal 15(11):663–667

    Article  Google Scholar 

  34. Yang C, Yang P, Wang W, Wang J, Zhang M, Lin J (2008) Solvothermal synthesis and characterization of Ln (Eu3 + , Tb3 +) doped hydroxyapatite. J Colloid Interface Sci 328:203–210

    Article  Google Scholar 

  35. Liu Z, Wang Q, Yao S, Yang L, Yu S, Feng X, Li X (2014) Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceram Int 40:2613–2617

    Article  Google Scholar 

  36. Sathishkumar S, Kavitha L, Shinyjoy E, Gopi D (2016) Tailoring the Sm/Gd-substituted hydroxyapatite coating on biomedical AISI 316L SS: exploration of corrosion resistance, protein profiling, osteocompatibility, and osteogenic differentiation for orthopedic implant applications. Ind Eng Chem Res 55:6331–6344

    Article  Google Scholar 

  37. Gopi D, Sathishkumar S, Karthika A, Kavitha L (2014) Development of Ce3+/Eu3+ dual-substituted hydroxyapatite coating on surgical grade stainless steel for improved antimicrobial and bioactive properties. Ind Eng Chem Res 53:20145–20153

    Article  Google Scholar 

  38. Mardziah CM, Sopyan I, Ramesh S (2009) Strontium-doped hydroxyapatite nanopowder via sol-gel method: effect of strontium concentration and calcination temperature on phase behavior. Trends Biomater Artif Organs 23(2):105–113

    Google Scholar 

  39. Degirmenbasi N, Kalyon DM, Birinci E (2006) Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloids Surf B 48:42–49

    Article  Google Scholar 

  40. Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, Betzel C (2004) Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J Cryst Growth 263:517–523

    Article  Google Scholar 

  41. Bigi A, Boanini E, Rubini K (2004) Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. J Solid State Chem 177:3092–3098

    Article  Google Scholar 

  42. Bideaux RA, Bladh KW, Nichols MC (2000) Handbook of mineralogy: arsenates, phosphates, vanadates. In: Anthony JW (ed), vol 4. Mineralogical Society of America, Chantilly

  43. Calderín L, Stott MJ, Rubio A (2003) Electronic and crystallographic structure of apatites. Phys Rev B 67(13):134106 (1–7)

  44. Abidi Asghar S, Murtaza Q (2014) Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J Mater Sci Technol 30(4):307–310

    Article  Google Scholar 

  45. Rulis P, Ouyang L, Ching WY (2004) Electronic structure and bonding in calcium apatite crystals: hydroxyapatite, fluoroapatite, chlorapatite, and bromapatite. Phys Rev B 70(15):155104 (1–8)

  46. Driessens FC (1983) Formation and stability of calcium phosphate in relation to the phase composition of the mineral in calcified tissue. In: Degroot K (ed) Bioceramics of calcium phosphate. CRC Press, Boca Raton

    Google Scholar 

  47. Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894

    Article  Google Scholar 

  48. Silva RF, Zaniquelli MED, Serra OA, Torriani IL, de Castro SGC (1998) Europium and terbium carboxylate interactions in monolayers and Langmuir–Blodgett films. Thin Solid Films 324:245–252

    Article  Google Scholar 

  49. Piccirillo C, Dunnill CW, Pullar RC, Tobaldi DM, Labrincha JA, Parkin IP, Pintado MM, Castro PML (2013) Calcium phosphate-based materials of natural origin showing photocatalytic activity. J Mater Chem A 1:6452–6461

    Article  Google Scholar 

  50. Bystrov VS, Piccirillo C, Tobaldi DM, Castro PML, Coutinho J, Kopyl S, Pullar RC (2016) Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Appl Catal B Environ 196:100–107

    Article  Google Scholar 

  51. Zhang C, Yang J, Quan Z, Yang P, Li C, Hou Z, Lin J (2009) Hydroxyapatite nano-and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Cryst Growth Des 9(6):2725–2733

    Article  Google Scholar 

  52. Machado TR, Sczancoski JC, Beltrán-Mir H, Nogueira C, Li MS, Andrés J, Cordoncillo E, Longo E (2017) A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. J Solid State Chem 249:64–69

    Article  Google Scholar 

  53. Santos RDS, Rezende MVS (2014) Atomistic simulation of intrinsic defects and trivalent and tetravalent ion doping in hydroxyapatite. Adv Condens Matter Phys 609024 (1–8)

  54. Leeuw NH, Bowe JR, Rabone JAL (2007) A computational investigation of stoichiometric and calcium-deficient oxy-deficient hydroxyl-apatites. Faraday Discuss 134:195–214

    Article  Google Scholar 

  55. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

Authors acknowledge 169157 CONACyT project, also 1855 SIP multidisciplinary project, and 20170208, 20170198, and 20170229 SIP projects for financial support. Y. Jimenez-Flores and M. Suárez-Quezada also thank CONACyT for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jiménez-Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Flores, Y., Suárez-Quezada, M., Rojas-Trigos, J.B. et al. Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination. J Mater Sci 52, 9990–10000 (2017). https://doi.org/10.1007/s10853-017-1201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1201-8

Keywords

Navigation