Skip to main content
Log in

UV-assisted mechanoluminescence properties of SrAl2O4:(Eu,Dy) for impact sensing

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SrAl2O4:(Eu,Dy) is one of the most promising mechanoluminescence materials that have potential applications in stress sensing, lighting, imaging and energy conversion. However, the ML intensity decays with the afterglow time of SrAl2O4:(Eu,Dy), which hampers its application in the real world. Here, the mechanoluminescence property of SrAl2O4:(Eu,Dy) was investigated by impact of a load. A method was proposed to overcome the drawback of the mechanoluminescence decay behavior associated with the afterglow time. During the measurement of mechanoluminescence, continuous UV irradiation on SrAl2O4:(Eu,Dy) can effectively realize steady-state mechanoluminescence that is independent of the afterglow time. The underlying mechanism is discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chandra BP (1998) Mechanoluminescence. In: Vij DR (ed) Luminescence of solids. Plenum Press, New York, pp 361–389

    Chapter  Google Scholar 

  2. Xu C-N, Zheng X-G, Akiyama M, Nonaka K, Watanabe T (2000) Dynamic visualization of stress distribution by mechanoluminescence image. Appl Phys Lett 76:179–181

    Article  Google Scholar 

  3. Wang XD, Zhang HL, Yu RM et al (2015) Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv Mater 27:2324–2331

    Article  Google Scholar 

  4. Xu J, Jo H (2016) Development of high-sensitivity and low-cost electroluminescent strain sensor for structural health monitoring. IEEE Sens J 16:1962–1968

    Article  Google Scholar 

  5. Terasaki N, Yamada H, Xu CN (2013) Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source. Catal Today 201:203–208

    Article  Google Scholar 

  6. Jeong SM, Song S, Joo KI, Kim J, Hwang SH, Jeong J, Kim H (2014) Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ Sci 7:3338–3346

    Article  Google Scholar 

  7. Fang H, Wang X, Li Q, Peng DF, Yan QF, Pan CF (2016) A stretchable nanogenerator with electric/light dual-mode energy conversion. Adv Energy Mater 6:1600829

    Article  Google Scholar 

  8. Sahu IP, Bisen DP, Sharma R (2016) UV excited green luminescence of SrAl2O4:Eu2+, Dy3+ nanophosphor. Res Chem Intermed 42:2791–2804

    Article  Google Scholar 

  9. Chandra VK, Chandra BP (2011) Suitable materials for elastico mechanoluminescence-based stress sensors. Opt Mater 34:194–200

    Article  Google Scholar 

  10. Hollerman WA, Fontenot RS, Bhat KN, Aggarwal MD, Guidry CJ, Nguyen KM (2012) Comparison of triboluminescent emission yields for 27 luminescent materials. Opt Mater 34:1517–1521

    Article  Google Scholar 

  11. Xu CN, Watanabe T, Akiyama M, Zheng XG (1999) Direct view of stress distribution in solid by mechanoluminescence. Appl Phys Lett 74:2414–2416

    Article  Google Scholar 

  12. Yun GJ, Rahimi MR, Gandomi AH, Lim GC, Choi JS (2013) Stress sensing performance using mechanoluminescence of SrAl2O4: Eu (SAOE) and SrAl2O4:Eu, Dy (SAOED) under mechanical loadings. Smart Mater Struct 22:055006

    Article  Google Scholar 

  13. Someya S, Ishii K, Munakata T, Saeki M (2014) Lifetime-based measurement of stress during cyclic elastic deformation using mechanoluminescence of SrAl2O4:Eu2+. Opt Express 22:21991–21998

    Article  Google Scholar 

  14. Fu XY, Yamada H, Xu CN (2009) Property of highly oriented SrAl2O4: Eu film on quartz glass substrates and its potential application in stress sensor. J Electrochem Soc 156:J249–J252

    Article  Google Scholar 

  15. Kim JS, Kim GW (2014) New non-contacting torque sensor based on the mechanoluminescence of ZnS: Cu microparticles. Sens Actuator A-Phys 218:125–131

    Article  Google Scholar 

  16. Chandra BP, Chandra VK, Mahobia SK, Jha P, Tiwari R, Haldar B (2012) Real-time mechanoluminescence sensing of the amplitude and duration of impact stress. Sens Actuator A-Phys 173:9–16

    Article  Google Scholar 

  17. Wang WX, Matsubara T, Takao Y, Imai Y, Xu CN (2009) Visualization of stress distribution using smart mechanoluminescence sensor. Mater Sci Forum 614:169–174

    Article  Google Scholar 

  18. Timilsina S, Lee KH, Kwon YN, Kim JS (2015) Optical evaluation of in situ crack propagation by using mechanoluminescence of SrAl2O4:Eu2+, Dy3+. J Am Ceram Soc 98:2197–2204

    Article  Google Scholar 

  19. Azad AI, Rahimi RM, Yun GJ (2016) Quantitative full-field strain measurements by SAOED (SrAl2O4:Eu2+, Dy3+) mechanoluminescent materials. Smart Mater Struct 25:095032

    Article  Google Scholar 

  20. Xu C-N (2002) Coatings. In: Schwartz M (ed) Encyclopedia of smart materials. Wiley, New York, pp 190–201

    Google Scholar 

  21. Van den Eeckhout K, Smet PF, Poelman D (2010) Persistent luminescence in Eu2+-doped compounds: a review. Materials 3:2536–2566

    Article  Google Scholar 

  22. Rahimi MR, Yun GJ, Doll GL, Choi JS (2013) Effects of persistent luminescence decay on mechanoluminescence phenomena of SrAl2O4:Eu2+, Dy3+ materials. Opt Lett 38:4134–4137

    Article  Google Scholar 

  23. Jha P (2016) Effect of UV irradiation on different types of luminescence of SrAl2O4:Eu, Dy phosphors. Luminescence 31:1302–1305

    Article  Google Scholar 

  24. Altenburg H, Plewa J, Plesch G, Shpotyuk O (2002) Thick films of ceramics, superconducting, and electro-ceramic materials. Pure Appl Chem 74:2083–2096

    Article  Google Scholar 

  25. Haranath D, Sharma P, Chander H (2005) Optimization of boric acid content in developing efficient blue emitting, long persistent phosphor. J Phys D Appl Phys 38:371–375

    Article  Google Scholar 

  26. Jha P, Chandra BP (2013) Impulsive excitation of mechanoluminescence in SrAl2O4:Eu, Dy phosphors prepared by solid state reaction technique in reduction atmosphere. J Lumin 143:280–287

    Article  Google Scholar 

  27. Rahimi MR, Yun GJ, Choi JS (2014) A predictive mechanoluminescence transduction model for thin-film SrAl2O4:Eu2+, Dy3+ (SAOED) stress sensor. Acta Mater 77:200–211

    Article  Google Scholar 

  28. Brito HF, Hölsä J, Laamanen T, Lastusaari M, Malkamaki M, Rodrigues LCV (2012) Persistent luminescence mechanisms: human imagination at work. Opt Mater Express 2:371–381

    Article  Google Scholar 

  29. Pan Z, Lu Y-Y, Liu F (2012) Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat Mater 11:58–63

    Article  Google Scholar 

  30. Han SC, Wang YH, Zeng W, Chen WB (2016) An outlook of rare-earth activated persistent luminescence mechanisms. J Rare Earth 34:245–250

    Article  Google Scholar 

  31. Chandra VK, Chandra BP (2012) Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals. J Lumin 132:858–869

    Article  Google Scholar 

  32. Botterman J, Joos JJ, Smet PF (2014) Trapping and detrapping in SrAl2O4:Eu, Dy persistent phosphors: influence of excitation wavelength and temperature. Phys Rev B 90:085147

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61372025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinan Mao or Zhenguo Ji.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Q., Chen, Z., Ji, Z. et al. UV-assisted mechanoluminescence properties of SrAl2O4:(Eu,Dy) for impact sensing. J Mater Sci 52, 8370–8376 (2017). https://doi.org/10.1007/s10853-017-1053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1053-2

Keywords

Navigation