Skip to main content

Mechanoluminescent Phosphors

  • Chapter
  • First Online:
Hybrid Phosphor Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 672 Accesses

Abstract

1Mechanoluminescence is a well-known phenomenon of light emission induced by deformation when certain solids suffer external mechanical stress. Mechano-luminescent materials which could convert mechanical energy directly into photons have attracted increasing attention in recent years for their wide potential applications in stress sensing and imaging, structural damage monitoring, wearable illuminating devices, self-powered display, mechanical energy collection and conversion, bio-imaging, and photodynamic therapy. Great progress has been made in developing novel materials with strong mechanoluminescence emission and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, X., Zhang, H., Yu, R., Dong, L., Peng, D., Zhang, A., Zhang, Y., Liu, H., Pan, C., Wang, Z.L.: Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27(14), 2324–2331 (2015)

    Article  CAS  Google Scholar 

  2. Liu, L., Xu, C.-N., Yoshida, A., Tu, D., Ueno, N., Kainuma, S.: Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis. Adv. Mater. Techno. 4(1), 1800336 (2019)

    Article  CAS  Google Scholar 

  3. Zhang, J., Bao, L., Lou, H., Deng, J., Chen, A., Hu, Y., Zhang, Z., Sun, X., Peng, H.: Flexible and stretchable mechanoluminescent fiber and fabric. J. Mater. Chem. C 5(32), 8027–8032 (2017)

    Article  CAS  Google Scholar 

  4. Jeong, S.M., Song, S., Joo, K.-I., Kim, J., Hwang, S.-H., Jeong, J., Kim, H.: Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 7(10), 3338–3346 (2014)

    Article  CAS  Google Scholar 

  5. Patel, D.K., Cohen, B.-E., Etgar, L., Magdassi, S.: Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark. Mater. Horizons 5(4), 708–714 (2018)

    Article  CAS  Google Scholar 

  6. Du, Y., Jiang, Y., Sun, T., Zhao, J., Huang, B., Peng, D., Wang, F.: Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 31(7), e1807062 (2019)

    Google Scholar 

  7. Wu, X., Zhu, X., Chong, P., Liu, J., Andre, L.N., Ong, K.S., Brinson, K., Jr.; Mahdi, A.I., Li, J., Fenno, L.E., Wang, H., Hong, G.: Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. 116(52), 26332–26342 (2019)

    Google Scholar 

  8. Wu, J., Wu, Z., Han, S., Yang, B.-R., Gui, X., Tao, K., Liu, C., Miao, J., Norford, L.K.: Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11(2), 2364–2373 (2019)

    Article  CAS  Google Scholar 

  9. Amoateng, D.O., Totaro, M., Crepaldi, M., Falotico, E., Beccai, L.: Intelligent position, pressure and depth sensing in a soft optical waveguide skin. In: IEEE international conference on soft robotics, pp. 349–354 (2019)

    Google Scholar 

  10. Walton, A.J.: Triboluminescence. Adv. Phys. 26(6), 887–948 (2006)

    Article  Google Scholar 

  11. Bünzli, J.-C.G., Wong, K.-L.: Lanthanide mechanoluminescence. J. Rare Earths 36(1), 1–41 (2018)

    Article  CAS  Google Scholar 

  12. Zhao, X.: On the phenomenon of earthquake luminescence (in Chinese). Encyclopedic Knowl. 22, 8–9 (2006)

    Google Scholar 

  13. Pu, J.-H., Zha, X.-J., Tang, L.-S., Bai, L., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B., Yang, W.: Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics. ACS Appl. Mater. Interfaces 10(47), 40880–40889 (2018)

    Article  CAS  Google Scholar 

  14. Eddingsaas, N.C., Suslick, K.S.: Mechanoluminescence: light from sonication of crystal slurries. Nature 444(7116), 163 (2006)

    Article  CAS  Google Scholar 

  15. Jha, P., Chandra, B.P.: Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29(8), 977–993 (2014)

    Article  CAS  Google Scholar 

  16. Chandra, B.P., Shrivastava, K.K.: Dependence of mechano-luminescence in Rochelle-salt crystals on the charge produced during their fracture. J. Phys. Chem. Solids 26(4), iv (1978)

    Google Scholar 

  17. Xu, C.N., Watanabe, T., Akiyama, M., Zheng, X.G.: Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 74(9), 1236–1238 (1999)

    Article  CAS  Google Scholar 

  18. Peng, S., Blanloeuil, P., Wu, S., Wang, C.H.: Rational design of ultrasensitive pressure sensors by tailoring microscopic features. Adv. Mater. Interfaces 5(18), 201800403 (2018)

    Google Scholar 

  19. Liu, M., Wu, Q., Shi, H., An, Z., Huang, W.: Progress of research on organic/organometallic mechanoluminescent materials. Acta Chimica Sinica Chin. Ed. 76(4), 246 (2018)

    Article  CAS  Google Scholar 

  20. Fontenot, R.S., Bhat, K.N., Hollerman, W.A., Alapati, T.R., Aggarwal, M.D.: Triboluminescent properties of dysprosium doped europium dibenzoylmethide triethylammonium. Ecs J. Solid State Sci. Technol. 2(9), P384–P388 (2013)

    Article  CAS  Google Scholar 

  21. Yu, J.B., Zhang, H.J., Deng, R.P., Zhou, L., Peng, Z.P., Fu, L.S.: Triboluminescence of a new europate complex. J. Rare Earths 22(1), 126–128 (2004)

    Google Scholar 

  22. Fontenot, R.S., Bhat, K.N., Hollerman, W.A., Aggarwal, M.D.: Triboluminescent materials for smart sensors. Mater. Today 14(6), 292–293 (2011)

    Article  CAS  Google Scholar 

  23. Takada, N., Sugiyama, J.I., Minami, N., Hieda, S.: Intense mechanoluminescence from europium tris(2-thenoyltrifluoroacetone) phenanthroline. Mol. Cryst. 295(1), 71–74 (1997)

    Google Scholar 

  24. Schoenweiz, S., Sorsche, D., Schwarz, B., Rau, S., Streb, C.: Structural and reactivity insights into covalently linked Cu(I) complex-Anderson polyoxometalates. Dalton Trans. 46(30), 9760–9764 (2017)

    Google Scholar 

  25. Inoue, T., Tazuke, S.: Poly[trans-1-(3-vinyl-9-carbazolyl)-2-(9-carbazolyl)cyclobutane]. Synthesis and comparison with poly(9-ethyl-3-vinylcarbazole). J. Polymer Sci. Polymer Chem. Ed. (1981)

    Google Scholar 

  26. Yang, J., Gao, X., Xie, Z., Gong, Y., Fang, M., Peng, Q., Chi, Z., Zhen, L.: Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angewandte Chemie (2017)

    Google Scholar 

  27. Nakayama, H., Nishida, J.I., Takada, N., Sato, H., Yamashita, Y.: Crystal structures and triboluminescence based on trifluoromethyl and pentafluorosulfanyl substituted asymmetric N-phenyl imide compounds. Chem. Mater. 24(4), 671 (2012)

    Article  CAS  Google Scholar 

  28. Chen, Y., Spiering, A.J.H., Karthikeyan, S., Peters, G.W.M., Sijbesma, R.P.: Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 4(7), 559–562 (2012)

    Article  CAS  Google Scholar 

  29. Zink, J.I., Hardy, G.E., Sutton, J.E.: Triboluminescence of sugars. J. Phys. Chem. 80(3), 248–249 (1976)

    Article  CAS  Google Scholar 

  30. Chandra, B., Tiwari, S., Ramrakhiani, M., Ansari, M.: Mechanoluminescence in centrosymmetric crystals. Cryst. Res. Technol. 26(6), 767–781 (1991)

    Article  CAS  Google Scholar 

  31. Chandra, B., Elyas, M., Shrivastava, K., Verma, R.: Mechanoluminescence and piezoelectric behaviour of monoclinic crystals. Solid State Commun. 36(11), 931–933 (1980)

    Article  CAS  Google Scholar 

  32. Chandra, B., Zink, J.I.: Triboluminescence of triclinic crystals. J. Lumin. 23(3–4), 363–372 (1981)

    Article  CAS  Google Scholar 

  33. Zink, J.I., Kaska, W.C.: Triboluminescence of hexaphenylcarbodiphosphorane. Emission from a molecular excited state populated by mechanical stress. J. Am. Chem. Soc. 95(22), 7510–7512 (1973)

    Google Scholar 

  34. Zink, J.I., Klimt, W.: Triboluminescence of coumarin. Fluorescence and dynamic spectral features excited by mechanical stress. J. Am. Chem. Soc. 96(14), 4690–4692 (1974)

    Google Scholar 

  35. Hardy, G.E., Baldwin, J.C., Zink, J.I., Kaska, W.C., Liu, P.-H., Dubois, L.: Triboluminescence spectroscopy of aromatic compounds. J. Am. Chem. Soc. 99(11), 3552–3558 (1977)

    Article  CAS  Google Scholar 

  36. Sweeting, L.M., Rheingold, A.L.: Crystal structure and triboluminescence. 1. 9-anthryl carbinols. J. Phys. Chem. 92(20), 5648–5655

    Google Scholar 

  37. Inoue, T., Tazuke, S.: Triboluminescence and tribopolymerization of 9-ethyl-3-vinylcarbazole. Chem. Lett. 1981(5), 589–592 (2006)

    Article  Google Scholar 

  38. Xu, B., Mu, Y., Mao, Z., Xie, Z., Wu, H., Zhang, Y., Jin, C., Chi, Z., Liu, S., Xu, J.: Achieving remarkable mechanochromism and white-light emission with thermally activated delayed fluorescence through the molecular heredity principle. Chem. Sci. 7 (2016)

    Google Scholar 

  39. Tiwari, G., Brahme, N., Sharma, R., Bisen, D.P., Sao, S.K., Kurrey, U.K.: Enhanced long-persistence of Ca2Al2SiO7:Ce3+ phosphors for mechanoluminescence and thermoluminescence dosimetry. J. Mater. Sci. Mater. Electron. 27(6), 6399–6407 (2016)

    Google Scholar 

  40. Xu, C.-N., Watanabe, T., Akiyama, M., Zheng, X.-G.: Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 74(17), 2414–2416 (1999)

    Article  CAS  Google Scholar 

  41. Zhang, H., Yamada, H., Terasaki, N., Xu, C.-N.: Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho. Appl. Phys. Lett. 91(8), 081905 (2007)

    Google Scholar 

  42. Akiyama, M., Xu, C.-N., Matsui, H., Nonaka, K., Watanabe, T.: Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7: Ce by irradiation with ultraviolet light. Appl. Phys. Lett. 75(17), 2548–2550 (1999)

    Article  CAS  Google Scholar 

  43. Zhang, L., Xu, C.-N., Yamada, H., Bu, N.: Enhancement of mechanoluminescence in CaAl2Si2O8: Eu2+ by partial Sr2+ substitution for Ca2+. J. Electrochem. Soc. 157(3), J50 (2010)

    Article  CAS  Google Scholar 

  44. Kamimura, S., Yamada, H., Xu, C.-N.: Development of new elasticoluminescent material SrMg2(PO4)2:Eu. J. Lumin. 132(2), 526–530 (2012)

    Article  CAS  Google Scholar 

  45. Zhang, H., Xu, C.-N., Terasaki, N., Yamada, H.: Electro-mechano-optical luminescence from CaYAl3O7: Ce. Electrochem. Solid State Lett. 14(11), J76 (2011)

    Article  CAS  Google Scholar 

  46. Zhang, L., Yamada, H., Imai, Y., Xu, C.-N.: Observation of elasticoluminescence from CaAl2Si2O8: Eu2+ and its water resistance behavior. J. Electrochem. Soc. 155(3), J63 (2007)

    Article  CAS  Google Scholar 

  47. Zhang, H., Yamada, H., Terasaki, N., Xu, C.-N.: Blue light emission from stress-activated CaYAl3O7: Eu. J. Electrochem. Soc. 155(5), J128 (2008)

    Article  CAS  Google Scholar 

  48. Zhang, H., Yamada, H., Terasaki, N., Xu, C.-N.: Stress-induced mechanoluminescence in SrCaMgSi2O7: Eu. Electrochem. Solid State Lett. 10(10), J129 (2007)

    Article  CAS  Google Scholar 

  49. Zhang, J.-C., Wang, X., Marriott, G., Xu, C.-N.: Trap-controlled mechanoluminescent materials. Prog. Mater Sci. 103, 678–742 (2019)

    Article  CAS  Google Scholar 

  50. Zhang, J.C., Xu, C.N., Long, Y.Z.: Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels. Opt. Express 21(11), 13699–13709 (2013)

    Article  CAS  Google Scholar 

  51. Akiyama, M., Xu, C.-N., Nonaka, K.: Intense visible light emission from stress-activated ZrO2:Ti. Appl. Phys. Lett. 81(3), 457–459 (2002)

    Article  CAS  Google Scholar 

  52. Botterman, J., Eeckhout, K.V.d., Baere, I.D., Poelman, D., Smet, P.F.: Mechanoluminescence in BaSi2O2N2:Eu. Acta Materialia 60(15), 5494–5500 (2012)

    Google Scholar 

  53. Zhang, L., Xu, C.-N., Yamada, H.: In strong mechanoluminescence from oxynitridosilicate phosphors. In: IOP Conference Series: Materials Science and Engineering, p. 212001 (2011)

    Google Scholar 

  54. Tu, D., Xu, C.-N., Fujio, Y., Yoshida, A.: Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu. Light: Sci. Appl. 4(11), e356 (2015)

    Google Scholar 

  55. Zhang, H., Terasaki, N., Yamada, H., Xu, C.-N.: Mechanoluminescence of europium-doped SrAMgSi2O7(A=Ca, Sr, Ba). Jpn. J. Appl. Phys. 48(4), 04C109 (2009)

    Article  CAS  Google Scholar 

  56. Matsui, H., Xu, C.-N., Akiyama, M., Watanabe, T.: Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4: Mn and MgGa2O4: Mn. Jpn. J. Appl. Phys. 39(12R), 6582 (2000)

    Article  CAS  Google Scholar 

  57. Matsui, H., Xu, C.-N., Tateyama, H.: Stress-stimulated luminescence from ZnAl2O4:Mn. Appl. Phys. Lett. 78(8), 1068–1070 (2001)

    Article  CAS  Google Scholar 

  58. Zhang, H., Yamada, H., Terasaki, N., Xu, C.-N.: Green mechanoluminescence of Ca2MgSi2O7: Eu and Ca2MgSi2O7: Eu, Dy. J. Electrochem. Soc. 155(2), J55 (2007)

    Article  CAS  Google Scholar 

  59. Zhao, H., Wang, X., Li, J., Li, Y., Yao, X.: Strong mechanoluminescence of Zn2(Ge0.9Si0.1)O4:Mn with weak persistent luminescence. Appl. Phys. Express 9(1), 012104 (2016)

    Google Scholar 

  60. Wang, W., Peng, D., Zhang, H., Yang, X., Pan, C.: Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging. Opt. Commun. 395, 24–28 (2017)

    Article  CAS  Google Scholar 

  61. Kamimura, S., Yamada, H., Xu, C.-N.: Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures. Appl. Phys. Lett. 101(9), 091113 (2012)

    Google Scholar 

  62. Li, L., Wong, K.-L., Li, P., Peng, M.: Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. J. Mater. Chem. C 4(35), 8166–8170 (2016)

    Article  CAS  Google Scholar 

  63. Zhang, J.C., Xu, C.N., Kamimura, S., Terasawa, Y., Yamada, H., Wang, X.: An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses. Opt. Express 21(11), 12976–12986 (2013)

    Article  CAS  Google Scholar 

  64. Zhang, J.-C., Fan, X.-H., Yan, X., Xia, F., Kong, W., Long, Y.-Z., Wang, X.: Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging. Acta Mater. 152, 148–154 (2018)

    Article  CAS  Google Scholar 

  65. Luo, Z., Hu, X., Tian, X., Luo, C., Xu, H., Li, Q., Li, Q., Zhang, J., Qiao, F., Wu, X., Borisenko, V.E., Chu, J.: Structure-property relationships in graphene-based strain and pressure sensors for potential artificial intelligence applications. Sensors 19(5), 1250 (2019)

    Article  CAS  Google Scholar 

  66. Zhang, J.-C., Long, Y.-Z., Wang, X., Xu, C.-N.: Controlling elastico-mechanoluminescence in diphase (Ba, Ca)TiO3:Pr3+ by co-doping different rare earth ions. RSC Adv. 4(77), 40665–40675 (2014)

    Article  CAS  Google Scholar 

  67. Pan, C., Zhang, J.-C., Zhang, M., Yan, X., Zhang, H.-D., Long, Y.-Z., Sun, X.-Y., Jiang, H.-T.: Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7 (M = Sr, Ca) isomorphic perovskites. Opt. Mater. Express 8(6), 1425 (2018)

    Article  CAS  Google Scholar 

  68. Li, Y., Gecevicius, M., Qiu, J.: Long persistent phosphors–from fundamentals to applications. Chem. Soc. Rev. 45(8), 2090–2136 (2016)

    Article  CAS  Google Scholar 

  69. Fan, X.H., Zhang, J.C., Zhang, M., Pan, C., Yan, X., Han, W.P., Zhang, H.D., Long, Y.Z., Wang, X.: Piezoluminescence from ferroelectric Ca3Ti2O7:Pr(3+) long-persistent phosphor. Opt. Express 25(13), 14238–14246 (2017)

    Article  CAS  Google Scholar 

  70. Tu, D., Xu, C.N., Yoshida, A., Fujihala, M., Hirotsu, J., Zheng, X.G.: LiNbO3:Pr(3+): a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 29(22) (2017)

    Google Scholar 

  71. Rao, N.M., Reddy, D.R., Reddy, B.K., Xu, C.N.: Intense red mechanoluminescence from (ZnS)1–x(MnTe)x. Phys. Lett. A 372(22), 4122–4126 (2008)

    Article  CAS  Google Scholar 

  72. Terasawa, Y., Xu, C.N., Yamada, H., Kubo, M.: Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions. IOP Conf. Ser. Mater. Sci. Eng. 18(21), 212013 (2011)

    Google Scholar 

  73. Xu, C.N., Li, C., Imai, Y., Yamada, H., Adachi, Y., Nishikubo, K.: Development of elastico-luminescent nanoparticles and their applications. Adv. Sci. Technol. 45, 939–944 (2006)

    Article  CAS  Google Scholar 

  74. Qian, X., Cai, Z., Su, M., Li, F., Fang, W., Li, Y., Zhou, X., Li, Q., Feng, X., Li, W., Hu, X., Wang, X., Pan, C., Song, Y.: Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 30(25), e1800291 (2018)

    Google Scholar 

  75. Liu, Y., Xu, C.-N.: Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol−gel process. J. Phys. Chem. B 107(17), 3991–3995 (2003)

    Article  CAS  Google Scholar 

  76. Chandra, B., Rathore, A.: Classification of mechanoluminescence. Cryst. Res. Technol. 30(7), 885–896 (1995)

    Article  CAS  Google Scholar 

  77. Zhang, H., Wei, Y., Huang, X., Huang, W.: Recent development of elastico-mechanoluminescent phosphors. J. Lumin. 207, 137–148 (2019)

    Article  CAS  Google Scholar 

  78. Chandra, V. K., Chandra, B.P., Jha, P.: Strong luminescence induced by elastic deformation of piezoelectric crystals. Appl. Phys. Lett. 102(24), 241105 (2013)

    Google Scholar 

  79. Chandra, B.P., Chandra, V.K., Jha, P.: Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials. Physica. B 461, 38–48 (2015)

    Article  CAS  Google Scholar 

  80. Zhang, Y., Gao, G., Chan, H.L., Dai, J., Wang, Y., Hao, J.: Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures. Adv. Mater. 24(13), 1729–1735 (2012)

    Article  CAS  Google Scholar 

  81. Dong, W., Huang, Y., Yin, Z., Zhou, Y., Chen, J.: Stretchable tactile and bio-potential sensors for human-machine interaction: a review. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds.) Intelligent Robotics and Applications, vol. 10984, pp. 155–163

    Google Scholar 

  82. Kim, J.S., Kim, G.-W.: New non-contacting torque sensor based on the mechanoluminescence of ZnS: Cu microparticles. Sens. Actuat. A 218, 125–131 (2014)

    Article  CAS  Google Scholar 

  83. Kim, G.-W., Kim, J.-S.: Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers. Measure. Sci. Technol. 25(1), 015009

    Google Scholar 

  84. Kim, J.S., Kwon, Y.-N., Shin, N., Sohn, K.-S.: Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation. Appl. Phys. Lett. 90(24), 241916 (2007)

    Google Scholar 

  85. Fujio, Y., Xu, C.-N., Terasawa, Y., Sakata, Y., Yamabe, J., Ueno, N., Terasaki, N., Yoshida, A., Watanabe, S., Murakami, Y.: Sheet sensor using SrAl2O4: Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel. Int. J. Hydrogen Energy 41(2), 1333–1340 (2016)

    Article  CAS  Google Scholar 

  86. Terasaki, N., Zhang, H., Yamada, H., Xu, C.N.: Mechanoluminescent light source for a fluorescent probe molecule. Chem. Commun. (Camb.) 47(28), 8034–8036 (2011)

    Article  CAS  Google Scholar 

  87. Jeong, S.M., Song, S., Kim, H.: Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite. Nano Energy 21, 154–161 (2016)

    Article  CAS  Google Scholar 

  88. Zhang, J.C., Pan, C., Zhu, Y.F., Zhao, L.Z., He, H.W., Liu, X., Qiu, J.: Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv. Mater. 30(49), e1804644 (2018)

    Google Scholar 

  89. Li, L., Wondraczek, L., Li, L., Zhang, Y., Zhu, Y., Peng, M., Mao, C.: CaZnOS:Nd(3+) emits tissue-penetrating near-infrared light upon force loading. ACS Appl. Mater. Interfaces 10(17), 14509–14516 (2018)

    Article  CAS  Google Scholar 

  90. Quan, C., Li, C., Qian, K., Xu, C.-N., Adachi, Y., Asundi, A.K., Chau, F.S., Ueno, N.: Real-time detection of axial force for reliable tightening control. 7522, 75223G (2009)

    Google Scholar 

  91. Terasaki, N., Yamada, H., Xu, C.-N.: Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source. Catal. Today 201, 203–208 (2013)

    Article  CAS  Google Scholar 

  92. Zhan, T., Xu, C.N., Fukuda, O., Yamada, H., Li, C.: Direct visualization of ultrasonic power distribution using mechanoluminescent film. Ultrason. Sonochem. 18(1), 436–439 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y., Zhang, H., Dong, L. (2022). Mechanoluminescent Phosphors. In: Upadhyay, K., Thomas, S., Tamrakar, R.K. (eds) Hybrid Phosphor Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-90506-4_2

Download citation

Publish with us

Policies and ethics