Journal of Materials Science

, Volume 52, Issue 15, pp 8812–8831 | Cite as

Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties

  • Ilaria CacciottiEmail author
In Honor of Larry Hench


Bioactive glass and glass ceramic materials are widely used as substitutes for bone augmentation and restoration, in orthopaedic, dental and maxillofacial surgery and in the tissue engineering field. Indeed, these materials are bioactive, biocompatible, mechanically stable, biodegradable and favour osteointegration, being able to promote bone tissue formation at their surface and to bond to surrounding living tissues when implanted in the human body. It has been demonstrated that bioglass (BG) ionic dissolution products (e.g. Si, Ca, P and Na) are able to induce and stimulate the expressions of genes related to the osteoblastic differentiation and bone formation, to stimulate angiogenesis in vitro and in vivo, as well as to play possible antibacterial and anti-inflammatory actions. Thus, it is possible to tailor BGs properties properly formulating their chemical composition and adding selected ions with specific functional and biological role. In this perspective, Hench proposed a new generation of genetically designed glasses, on the basis of their ability to activate specific genes involved in in situ tissue regeneration, by doping silicate and phosphate glasses with several active ions, particularly metallic ions with therapeutic effects. In this framework, the present review is aimed to provide an overview about the effect of selected cationic substitutions (i.e. magnesium, zinc, strontium and copper), incorporated within the bioglasses structure, on the physical and biological properties of these materials, since the comprehension of the influence of the most employed metallic ions has to be considered pivotal to address the formulation of more promising and performing glasses.


Vascular Endothelial Growth Factor Strontium Simulated Body Fluid Bioactive Glass Strontium Ranelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

Author declares no conflict of interest.


  1. 1.
    Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485CrossRefGoogle Scholar
  2. 2.
    Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G (2007) Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Thermal Anal Calor. 88:237–243CrossRefGoogle Scholar
  3. 3.
    Cacciotti I, Bianco A (2011) High thermally stable Mg-substituted tricalcium phosphate by precipitation. Ceram Inter 37:127–137CrossRefGoogle Scholar
  4. 4.
    Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728CrossRefGoogle Scholar
  5. 5.
    Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRefGoogle Scholar
  6. 6.
    Cacciotti I, Lombardi M, Bianco A, Ravaglioli A, Montanaro L (2012) Sol-gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci Mater Med 23(8):1849–1866CrossRefGoogle Scholar
  7. 7.
    Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15:543–562CrossRefGoogle Scholar
  8. 8.
    Day RM (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–777CrossRefGoogle Scholar
  9. 9.
    Hench LL (1993) Bioceramics. J Am Ceram Soc 81:1705–1728CrossRefGoogle Scholar
  10. 10.
    Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5(12):685–697CrossRefGoogle Scholar
  11. 11.
    Jell G, Stevens MM (2006) Gene activation by bioactive glasses. J Mater Sci Mater Med 17:997–1002CrossRefGoogle Scholar
  12. 12.
    Cacciotti I. Cationic and Anionic substitutions in hydroxyapatite, In: Handbook of Bioceramics and Biocomposites, Iulian Vasile Antoniac Editor, Springer International Publishing 2016:145–211Google Scholar
  13. 13.
    Saltman PD, Strause LG (1993) The role of trace minerals in osteoporosis. J Am Coll Nutr 12:384–389CrossRefGoogle Scholar
  14. 14.
    Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. J Europ Ceram Soc 29(14):2969–2978CrossRefGoogle Scholar
  15. 15.
    Bianco A, Cacciotti I, Lombardi M, Montanaro L (2009) Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull 44:345–354CrossRefGoogle Scholar
  16. 16.
    Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M (2010) F-substituted hydroxyapatite nanopowders: thermal stability, sintering behavior and mechanical properties. Ceram Inter 36(1):313–322CrossRefGoogle Scholar
  17. 17.
    Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29:1257–1265CrossRefGoogle Scholar
  18. 18.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRefGoogle Scholar
  19. 19.
    Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419CrossRefGoogle Scholar
  20. 20.
    Hoppe A, Mouriño V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci 1:254–256CrossRefGoogle Scholar
  21. 21.
    Abou Neel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6:435–446CrossRefGoogle Scholar
  22. 22.
    Miola M, Vitale Brovarone C, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G et al (2014) In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C 38:107–118CrossRefGoogle Scholar
  23. 23.
    Gomez-Vega J, Saiz E, Tomsia A, Marshall G, Marshall S (2000) Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials 21:105–111CrossRefGoogle Scholar
  24. 24.
    Rau JV, Teghil R, Fosca M, De Bonis A, Cacciotti I, Bianco A, Caminiti R, Rossi Albertini V, Ravaglioli A (2012) Bioactive glass-ceramic coatings deposited by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route). Mater Res Bull 47:1130–1137CrossRefGoogle Scholar
  25. 25.
    Ledda M, De Bonis A, Bertani FR, Cacciotti I, Teghil R, Lolli MG, Ravaglioli A, Lisi A, Rau JV (2015) Interdisciplinary Approach to Cell-Biomaterial Interactions: biocompatibility and Cell Friendly Characteristics of RKKP Glass-Ceramic Coatings on Titanium. Biomed Material 10(3):035005CrossRefGoogle Scholar
  26. 26.
    De Bonis A, Curcio M, Fosca M, Cacciotti I, Santagata A, Teghil R (2016) Rau JV RBP1 bioactive glass-ceramic films obtained by pulsed laser deposition. Mater Lett 175:195–198CrossRefGoogle Scholar
  27. 27.
    Gerhardt LC, Widdows KL, Erol MM, Burch CW, Sanz-Herrera JA, Ochoa I, Stämpfli R, Roqan IS, Gabe S, Ansari T et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32:4096–4108CrossRefGoogle Scholar
  28. 28.
    Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRefGoogle Scholar
  29. 29.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486CrossRefGoogle Scholar
  30. 30.
    Beattie JH, Avenell A (1992) Trace element nutrition and bone metabolism. Nutr Res Rev 5:167–188CrossRefGoogle Scholar
  31. 31.
    Nielsen F (1990) New essential trace elements for the life sciences. Biol Trace Elem Res 26–27:599–611CrossRefGoogle Scholar
  32. 32.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass_ 45S5 dissolution. J Biomed Mater Res 55:151–157CrossRefGoogle Scholar
  33. 33.
    Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207CrossRefGoogle Scholar
  34. 34.
    Leu A, Leach J (2008) Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 25:1222–1229CrossRefGoogle Scholar
  35. 35.
    Allan I, Newman H, Wilson M (2001) Antibacterial activity of particulate Bioglass_against supra- and subgingival bacteria. Biomaterials 2001(22):1683–1687CrossRefGoogle Scholar
  36. 36.
    Gorriti MF, López JMP, Boccaccini AR, Audisio C, Gorustovich AA (2009) In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 11:B67–B70CrossRefGoogle Scholar
  37. 37.
    Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 93:475–483Google Scholar
  38. 38.
    Stoor P, Söderling E, Salonen JI (1998) Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 56:161–165CrossRefGoogle Scholar
  39. 39.
    Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M et al (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med 19:547–551CrossRefGoogle Scholar
  40. 40.
    Hu S, Chang J, Liu M, Ning C (2009) Study on antibacterial effect of 45S5 Bioglass. J Mater Sci Mater Med 20(1):281–286CrossRefGoogle Scholar
  41. 41.
    Jones J, Ehrenfried L, Saravanapavan P, Hench L (2006) Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci Mate Med 17:989–996CrossRefGoogle Scholar
  42. 42.
    Yli-Urpo H, Närhi T, Söderling E (2003) Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand 61:241–246CrossRefGoogle Scholar
  43. 43.
    Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D et al (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32CrossRefGoogle Scholar
  44. 44.
    Day RM, Boccaccini AR (2005) Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res A 73A:73–79CrossRefGoogle Scholar
  45. 45.
    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15CrossRefGoogle Scholar
  46. 46.
    Baino F, Novajra G, Miguez-Pacheco V, Boccaccini AR, Vitale-Brovarone C (2016) Bioactive glasses: special applications outside the skeletal system. J Non-Cryst Solids 432:15–30CrossRefGoogle Scholar
  47. 47.
    Miguez-Pacheco V, Greenspan D, Hench LL, Boccaccini AR (2015) Bioactive glasses in soft tissue repair. Am Ceram Soc Bull 94:27–31Google Scholar
  48. 48.
    Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE et al (2014) Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS ONE 99(12):e113319CrossRefGoogle Scholar
  49. 49.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to Ceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  50. 50.
    Shelby JE (2005) Introduction to Glass Science and Technology, 2nd edn. The Royal Society of Chemistry, CambridgeGoogle Scholar
  51. 51.
    Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A. 102(1):254–274CrossRefGoogle Scholar
  52. 52.
    Tilocca A (2009) Structural models of bioactive glasses from molecular dynamics simulations. Proc R Soc A 465:1003–1027CrossRefGoogle Scholar
  53. 53.
    Wers E, Oudadesse H (2014) Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim 115(3):2137–2144CrossRefGoogle Scholar
  54. 54.
    Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L (2006) Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol 38(7):1171–1180CrossRefGoogle Scholar
  55. 55.
    Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129CrossRefGoogle Scholar
  56. 56.
    Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11(2–3):119–135CrossRefGoogle Scholar
  57. 57.
    Sun ZL, Wataha JC, Hanks CT (1997) Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res 34(1):29–37CrossRefGoogle Scholar
  58. 58.
    LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, BaselCrossRefGoogle Scholar
  59. 59.
    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C et al (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175–184CrossRefGoogle Scholar
  60. 60.
    Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T et al (2002) Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 62(1):99–105CrossRefGoogle Scholar
  61. 61.
    Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J (2005) Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37(2):211–219CrossRefGoogle Scholar
  62. 62.
    Percival M (1999) Bone health and Osteoporosis. Appl Nutr Sci Rep 5(4):1–5Google Scholar
  63. 63.
    Bigi A, Foresti B, Gregoriani R, Ripamonti A, Roveri N (1992) Shah JS The role of magnesium on the structure of biological apatites. Calcif Tissue Int 50:439–444CrossRefGoogle Scholar
  64. 64.
    Brown KH, Wuehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull 22:113–125CrossRefGoogle Scholar
  65. 65.
    Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534CrossRefGoogle Scholar
  66. 66.
    Yamaguchi M, Yamaguchi R (1986) Action of zinc on bone metabolism in rats. Increases in alkaline phosphatise activity and DNA content. Biochem Pharmacol 35:773–777CrossRefGoogle Scholar
  67. 67.
    Holloway WR, Collier FM, Herbt RE, Hodge JM, Nicolson GC (1996) Osteoblast-mediated effects of zinc on isolated rat osteoclasts: inhibition of bone resorption and enhancement of osteoclast number. Bone 19:137–142CrossRefGoogle Scholar
  68. 68.
    Lang C, Murgia C, Leong M, Tan LW, Perozzi G, Knight D et al (2007) Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am J Physiol Lung Cell Mol Physiol 292(2):L577–L584CrossRefGoogle Scholar
  69. 69.
    Cousins RJ (1998) A role of zinc in the regulation of gene expression. Proc Nutr Soc 57:307–311CrossRefGoogle Scholar
  70. 70.
    Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH et al (2010) Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 46(3):732–741CrossRefGoogle Scholar
  71. 71.
    Brandao NJ, Stefan V, Mendonca BB, Bloise W, Castro AVV (1995) The essential role of zinc in growth. Nutr. Res. 15:335–358CrossRefGoogle Scholar
  72. 72.
    Williams C, McBride S, Mostler K, Petrone DM, Simone AJ, Crawford R, Patel S, Petrone ME, Chaknis P, DeVizio W, Volpe AR, Proskin HM (1998) Efficacy of a dentifrice containing zinc citrate for the control of plaque and gingivitis: a 6-month clinical study in adults. Compend Contin Educ Dent 19(2):4–15Google Scholar
  73. 73.
    D’Haese PC, Van Landeghem GF, Lamberts LV, Bekaert VA, Schrooten I, De Broe ME (1997) Measurement of strontium in serum, urine, bone, and soft tissues by Zeeman atomic absorption spectrometry. Clin Chem 43(1):121–128Google Scholar
  74. 74.
    Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453CrossRefGoogle Scholar
  75. 75.
    Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468CrossRefGoogle Scholar
  76. 76.
    Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138CrossRefGoogle Scholar
  77. 77.
    Sila-asna M, Bunyaratvej A (2007) Kobe University Repository: kernel. Kobe J Med Sci 53(1):25–35Google Scholar
  78. 78.
    Marie PJ (2006) Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38(2):S10–S14CrossRefGoogle Scholar
  79. 79.
    Brauer DS, Karpukhina N, Kedia G, Bhat A, Law RV, Radecka I, Hill RG (2012) Bactericidal strontium-releasing injectable bone cements based on bioactive glasses. J R Soc Interfac 10(78):1–8CrossRefGoogle Scholar
  80. 80.
    Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136(2):216–226CrossRefGoogle Scholar
  81. 81.
    Reginster JY (2002) Strontium ranelate in osteoporosis. Curr Pharm Design 8(21):1907–1916CrossRefGoogle Scholar
  82. 82.
    Peng SL, Zhou GQ, Luk KDK, Cheung KMC, Li ZY, Lam WM, Zhou ZJ, Lu WW (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23(1–3):165–174CrossRefGoogle Scholar
  83. 83.
    Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A (2001) Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 29(2):176–179CrossRefGoogle Scholar
  84. 84.
    Dollwet H, Sorenso J (1985) Historic uses of copper compounds in medicine. Trace Elements in Medicine 2(2):80–87Google Scholar
  85. 85.
    Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecas IB, Raicevic S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256(20):6083–6089CrossRefGoogle Scholar
  86. 86.
    Hu GF (1998) Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 69(3):326–335CrossRefGoogle Scholar
  87. 87.
    Rodríguez JP, Ríos S, González M (2002) Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem 85(1):92–100CrossRefGoogle Scholar
  88. 88.
    Zhang JC, Huang JA, Xu SJ, Wang K, Yu SF (2003) Effects of Cu2+ and pH on osteoclastic bone resorption in vitro. Prog Nat Sci 13(4):266–270Google Scholar
  89. 89.
    Kothapalli CR, Ramamurthi A (2009) Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater 5:541–553CrossRefGoogle Scholar
  90. 90.
    Finney L, Vogt S, Fukai T, Glesne D (2009) Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin Exp Pharmacol Physiol 36(1):88–94CrossRefGoogle Scholar
  91. 91.
    Gérard C, Bordeleau L-J, Barralet J, Doillon CJ (2010) The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 31(5):824–831CrossRefGoogle Scholar
  92. 92.
    Feng W (2009) YeF, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol 75:174–182CrossRefGoogle Scholar
  93. 93.
    Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK et al (2002) Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol 282:H1821–H1827CrossRefGoogle Scholar
  94. 94.
    Li S, Xie H, Li S, Kang YJ (2012) Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway. Exp Biol Med 237:77–82CrossRefGoogle Scholar
  95. 95.
    Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163CrossRefGoogle Scholar
  96. 96.
    Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76CrossRefGoogle Scholar
  97. 97.
    Bejarano J, Caviedes P, Palza H (2015) Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater 10(2):025001CrossRefGoogle Scholar
  98. 98.
    Bini M, Grandi S, Capsoni D, Mustarelli P, Saino E, Visai L (2009) SiO2–P2O5–CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. J Phys Chem C 113:8821–8828CrossRefGoogle Scholar
  99. 99.
    Aina V, Cerrato G, Martra G, Malavasi G, Lusvardi G, Menabue L (2013) Towards the controlled release of metal nanoparticles from biomaterials: physico-chemical, morphological and bioactivity features of Cu-containing sol–gel glasses. Appl Surf Sci 283:240–248CrossRefGoogle Scholar
  100. 100.
    Aina V, Malavasi G, Fiorio Pla A, Munaron L, Morterra C (2009) Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater 5:1211–1222CrossRefGoogle Scholar
  101. 101.
    Lusvardi G, Malavasi G, Menabue L, Menziani MC (2002) Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J Phys Chem B 106:9753–9760CrossRefGoogle Scholar
  102. 102.
    Srivastava AK, Pyare R (2012) Characterization of CuO substituted 45S5 bioactive glasses and glass-ceramics. Int J Sci Technol Res 1:28–41Google Scholar
  103. 103.
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34:422–433CrossRefGoogle Scholar
  104. 104.
    Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524CrossRefGoogle Scholar
  105. 105.
    El-Kady AM, Ali AF (2012) Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram Int 38:1195–1204CrossRefGoogle Scholar
  106. 106.
    Fredholm YC, Karpukhina N, Law RV, Hill RG (2010) Strontium containing bioactive glasses: glass structure and physical properties. J Non-Cryst Solids 356(44):2546–2551CrossRefGoogle Scholar
  107. 107.
    Anand V, Singh KJ, Kaur K (2014) Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer. J Non-Cryst Solids 406:88–94CrossRefGoogle Scholar
  108. 108.
    Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep 4:4392CrossRefGoogle Scholar
  109. 109.
    McMillan P (1964) Glass-Ceramics. Academic Press, LondonGoogle Scholar
  110. 110.
    Pereira D, Cachinho S, Ferro MC, Fernandes MHV (2004) Surface behaviour of high MgO-containing glasses of the Si–Ca–P–Mg system in a synthetic physiological fluid. J Eur Ceram Soc 24:3693–3701CrossRefGoogle Scholar
  111. 111.
    Karakassids MA, Sranti A, Koutselas I (2004) Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids 347:69–79CrossRefGoogle Scholar
  112. 112.
    Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J et al (2013) In vitro reactivity of Cu doped 45S5 Bioglass derived scaffolds for bone tissue engineering. J Mater Chem B 1:5659–5674CrossRefGoogle Scholar
  113. 113.
    Shahrabi S, Hesaraki S, Moemeni S, Khorami M (2011) Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions. Ceram Inter 37(7):2737–2746CrossRefGoogle Scholar
  114. 114.
    Wers E, Oudadesse H, Lefeuvre B, Lucas-Girot A, Rocherullé J, Lebullenger R (2014) Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses. J Therm Anal Calorim 117:579–588CrossRefGoogle Scholar
  115. 115.
    Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120:138–151CrossRefGoogle Scholar
  116. 116.
    Dubok VA (2000) Bioceramics: yesterday, Today, Tomorrow. Powder Metall Metal Ceram 39(7–8):381–394CrossRefGoogle Scholar
  117. 117.
    Rawlings RD (1993) Bioactive glasses and glass-ceramics. Clin Mater 14:155–179CrossRefGoogle Scholar
  118. 118.
    Strnad Z (1992) Role of the glass phase in bioactive glass-ceramics, glass phase in bioactive glass-ceramics. Biomaterials 13:317–321CrossRefGoogle Scholar
  119. 119.
    Hill R (1996) An alternative view of the degradation of bioglass. J Mater Sci Lett 15:1122–1125CrossRefGoogle Scholar
  120. 120.
    Al-Noamana A, Rawlinson SCF, Hill RG (2012) The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non-Cryst Solids 358:3019–3027CrossRefGoogle Scholar
  121. 121.
    Branda F, Arcobello-Varlese F, Costantini A, Luciani G (2002) Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO–2SiO2 glass. Biomaterials 23:711–716CrossRefGoogle Scholar
  122. 122.
    Balamurugan A, Balossier G, Michel J, Kannan S, Benhayoune H, Rebelo AHS, Ferreira JMF (2007) Sol gel derived SiO2–CaO–MgO–P2O5 bioglass system-preparation and in vitro characterization. J Biomed Mater Res Part B Appl Biomater 83:546–553CrossRefGoogle Scholar
  123. 123.
    Dietrich E, Oudadesse H, Lucas-Girot A, Mami M (2009) In vitro bioactivity of melt derived glass 46S6 doped with magnesium. J Biomed Mater Res A 88A(4):1087–1096CrossRefGoogle Scholar
  124. 124.
    Oliveira JM, Correia RN, Fernandes MH (2002) Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials 23:371–379CrossRefGoogle Scholar
  125. 125.
    Moya JS, Tomsia AP, Pazo A, Santos C, Guitian F (1994) In vitro formation of hydroxylapatite layer in a MgO-containing glass. J Mater Sci Mater Med 5:529–532CrossRefGoogle Scholar
  126. 126.
    Ma J, Chen CZ, Wang DG, Jiao Y, Shi JZ (2010) Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surf B Biointerfaces 81:87–95CrossRefGoogle Scholar
  127. 127.
    Ma J, Chen CZ, Wang DG, Shao X, Wang CZ, Zhang HM (2012) Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO–MgO–SiO2–P2O5 system. Ceram Int 38:6677–6684CrossRefGoogle Scholar
  128. 128.
    Massera J, Hupa L, Hupa M (2012) Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4. J Non-Cryst Solids 358:2701–2707CrossRefGoogle Scholar
  129. 129.
    Vallet-Regi M, Salinas AJ, Roman J, Gil M (1999) Effect of magnesium content on the in vitrobioactivity of CaO–MgO–SiO2–P2O5 sol-gel glasses. J Mater Chem 9:515–518CrossRefGoogle Scholar
  130. 130.
    Courthéoux L, Lao J, Nedelec JM, Jallot E (2008) Controlled bioactivity in zincdoped sol_gel-derived binary bioactive glasses. J Phys Chem C 112(35):13663–13667CrossRefGoogle Scholar
  131. 131.
    Singh RK, Srinivasan A (2010) Bioactivity of SiO2-CaO-P2O5-Na2O glasses containing zinc-iron oxide. Appl Surf Sci 256(6):1725–1730CrossRefGoogle Scholar
  132. 132.
    Lusvardi G, Malavasi G, Menabue L, Menziani MC, Pedone A, Segre U, Aina V, Perardi A, Morterra C, Boccafoschi F, Gatti S, Bosetti M, Cannas M (2008) Properties of zinc releasing surfaces for clinical applications. J Biomater Appl 22(6):505–526CrossRefGoogle Scholar
  133. 133.
    Oki A, Parveen B, Hossain S, Adeniji S, Donahue H (2004) Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. J Biomed Mater Res A 69A(2):216–221CrossRefGoogle Scholar
  134. 134.
    Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D (2007) Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact 167(3):207–218CrossRefGoogle Scholar
  135. 135.
    Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S, Suuronen R (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5(8):3122–3131CrossRefGoogle Scholar
  136. 136.
    Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AH, Ferreira JM (2007) Development and in vitro characterization of sol-gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater 3:255–262CrossRefGoogle Scholar
  137. 137.
    Atkinson I, Anghel EM, Predoana L, Mocioiu OC, Jecu L, Raut I, Munteanu C, Culita D, Zaharescu M (2016) Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Inter 42(2):3033–3045CrossRefGoogle Scholar
  138. 138.
    Fujita Y, Yamamuro T, Nakamura T, Kotani S, Ohtsuki C, Kokubo T (1991) The bonding behavior of calcite to bone. J Biomed Mater Res 25(8):991–1003CrossRefGoogle Scholar
  139. 139.
    Du RL, Chang J, Ni SY, Zhai WY, Wang JY (2006) Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J Biomater Appl 20(4):341–360CrossRefGoogle Scholar
  140. 140.
    Lao J, Jallot E (2008) Nedelec J- M. Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater 20(15):4969–4973CrossRefGoogle Scholar
  141. 141.
    Lao J, Nedelec JM, Jallot E (2009) New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J Mater Chem 19(19):2940–2949CrossRefGoogle Scholar
  142. 142.
    Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng C 30(3):383–390CrossRefGoogle Scholar
  143. 143.
    Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interf 9(70):880–889CrossRefGoogle Scholar
  144. 144.
    Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281CrossRefGoogle Scholar
  145. 145.
    O’Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6(7):2382–2385CrossRefGoogle Scholar
  146. 146.
    Sriranganathan D, Kanwal N, Hing KA, Hill RG (2016) Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. J Mater Sci Mater Med 27(2):1–10CrossRefGoogle Scholar
  147. 147.
    Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li ZY, Lam WM, Lu WW, Wang DP, Huang WH, Lin KL, Chang J (2010) Strontium borate glass: potential biomaterial for bone regeneration. J Royal Soc Interf 7(48):1025–1031CrossRefGoogle Scholar
  148. 148.
    Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KM, Luk KD, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460CrossRefGoogle Scholar
  149. 149.
    Wers E, Bunetel L, Oudadesse H, Lefeuvre B, Lucas-Girot A, Mostafa A, Pellen P (2013) Effect of copper and zinc on the bioactivity and cells viability of bioactive glasses. Bioceram Dev Appl. S1:013Google Scholar
  150. 150.
    Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW (2009) Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater 5(9):3536–3547CrossRefGoogle Scholar
  151. 151.
    Chen X, Liao X, Huang Z, You P, Chen C, Kang Y, Yin G (2010) Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system. J Biomed Mater Res B Appl Biomater 93B(1):194–202Google Scholar
  152. 152.
    Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2eCaOeP2O5eMgO bioglass. Mater Sci Eng C 29(1):335–340CrossRefGoogle Scholar
  153. 153.
    Knabe C, Stiller M, Berger G, Reif D, Gildenhaar R, Howlett CR, Zreiqat H (2005) The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro. Clin Oral Implants Res 16(1):119–127CrossRefGoogle Scholar
  154. 154.
    Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater 21:130–143CrossRefGoogle Scholar
  155. 155.
    Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG et al (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31(14):3949–3956CrossRefGoogle Scholar
  156. 156.
    Hesaraki S, Alizadeh M, Nazarian H, Sharifi D (2010) Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J Mater Sci Mater Med 21(2):695–705CrossRefGoogle Scholar
  157. 157.
    Gorustovich AA, Steimetz T, Cabrini RL, López JMP (2010) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A 92A(1):232–237CrossRefGoogle Scholar
  158. 158.
    Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Tao C, Zhu Y, Zhang C (2015) Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat criticalsized calvarial defects. Acta Biomater 12:270–280CrossRefGoogle Scholar
  159. 159.
    Kong N, Lin K, Li H, Chang J (2014) Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J Mater Chem B 2:1100–1110CrossRefGoogle Scholar
  160. 160.
    Zhao S, Wang H, Zhang Y, Huang W, Rahaman MN, Liu Z, Wang D, Zhang C (2015) Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater 14:185–196CrossRefGoogle Scholar
  161. 161.
    Wang H, Zhao SC, Zhou J, Shen YQ, Huang WH, Zhang CQ, Rahaman MN, Wang D (2014) Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing. J Mater Chem B 2:8547–8557CrossRefGoogle Scholar
  162. 162.
    Varmette EA, Nowalk JR, Flick LM, Hall MM (2009) Abrogation of the inflammatory response in LPS-stimulated RAW 264.7 murine macrophages by Zn- and Cu- doped bioactive sol-gel glasses. J Biomed Mater Res A 90A(2):317–325CrossRefGoogle Scholar
  163. 163.
    Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, Ferreira JM (2008) An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dental Mater 24(10):1343–1351CrossRefGoogle Scholar
  164. 164.
    Palza H, Escobar B, Bejarano J, Bravo D, Diaz-Dosque M, Pereza J (2013) Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method. J Mater Sci Eng C 33:3795–3801CrossRefGoogle Scholar
  165. 165.
    Guida A, Towler MR, Wall JG, Hill RG, Eramo S (2003) Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett 22(20):1401–1403CrossRefGoogle Scholar
  166. 166.
    Gough JE, Notingher I, Hench LL (2004) Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A 68(4):640–650CrossRefGoogle Scholar
  167. 167.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491CrossRefGoogle Scholar
  168. 168.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefGoogle Scholar
  169. 169.
    Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater 2:231–239CrossRefGoogle Scholar
  170. 170.
    Hench LL (1997) Sol-gel materials for bioceramic applications. Curr Opin Solid State Mater Sci 2:604–610CrossRefGoogle Scholar
  171. 171.
    Dimitriev Y, Ivanova Y, Iordanova R (2008) History of sol-gel science and technology. J Uni Chem Tech Metall 43:181–192Google Scholar
  172. 172.
    Lombardi M, Gremillard L, Chevalier J, Lefebvre L, Cacciotti I, Bianco A, Montanaro L (2013) A comparative study between melt-derived and sol-gel synthesized 45S5 bioactive glasses. Key Eng Mater 541:15–30CrossRefGoogle Scholar
  173. 173.
    Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J Biomed Mater Res 54:608–618CrossRefGoogle Scholar
  174. 174.
    Kau G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274CrossRefGoogle Scholar
  175. 175.
    Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61(2):301–311CrossRefGoogle Scholar
  176. 176.
    Berger G, Gildenhaar R (1992) Long-term stable bioactive glass ceramic as implant material: ten years of clinical experience. In: Fourth world biomaterials congress, Federal Republic of Germany, Berlin, 24–28 April, p 33Google Scholar
  177. 177.
    Cacciotti I, Lehmann G, Camaioni A, Bianco A (2013) AP40 bioactive glass ceramic by sol-gel synthesis: in vitro dissolution and cell-mediated bioresorption. Key Eng Mater 541:41–50CrossRefGoogle Scholar
  178. 178.
    Covani U, Giacomelli L, Krajewski A, Ravaglioli A, Spotorno L, Loria P, Das S, Nicolini C (2007) Biomaterials for orthopedics: a roughness analysis by atomic force microscopy. J Biomed Mater Res A 82(3):723–730CrossRefGoogle Scholar
  179. 179.
    Krajewski A, Ravaglioli A, Tinti A, Taddei P, Mazzocchi M, Martinetti R, Fagnano C, Fini M (2005) Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses. J Mater Sci Mater Med 16:119–128CrossRefGoogle Scholar
  180. 180.
    Lombardi M, Cacciotti I, Bianco A, Montanaro L (2015) RKKP bioactive glass-ceramic material via an aqueous sol-gel process. Ceram Inter 41(3):3371–3380CrossRefGoogle Scholar
  181. 181.
    Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook IM (2009) Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc- silicate glasses. J Mater Sci Mater Med 20(1):413–420CrossRefGoogle Scholar
  182. 182.
    Murphy S, Boyd D, Moane S, Bennett M (2009) The effect of composition on ion release from CaeSreNaeZneSi glass bone grafts. J Mater Sci Mater Med 20(11):2207–2214CrossRefGoogle Scholar
  183. 183.
    Murphy S, Wren A, Towler M, Boyd D (2010) The effect of ionic dissolution products of CaSrNaZnSi bioactive glass on in vitro cytocompatibility. J Mater Sci Mater Med 21(10):2827–2834CrossRefGoogle Scholar
  184. 184.
    Baghbani F, Moztarzadeh F, Hajibaki L, Mozafari M (2013) Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): in vitro study. Bull Mater Sci 36(7):1339–1346CrossRefGoogle Scholar
  185. 185.
    Rezaei Y, Moztarzadeh F, Shahabi S, Tahriri M (2014) Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived SiO2–CaO–P2O5–MgO-SrO Bioactive Glass. Synth React Inorg Met-Org Nano-Met Chem 44(5):692–701CrossRefGoogle Scholar
  186. 186.
    Azevedo MM, Jell G, O’Donnell MD, Law RV, Hill RG, Stevens MM (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20(40):8854–8864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Engineering DepartmentUniversity of Rome “Niccolò Cusano”RomeItaly
  2. 2.Italian Interuniversity Consortium on Materials Science and Technology (INSTM)RomeItaly

Personalised recommendations