Skip to main content
Log in

X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters investigations for zinc molybdenum borotellurite glasses containing different network modifiers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc molybdenum borotellurite glasses containing different network modifiers with the nominal composition of 60 TeO2–10 B2O3–10 MoO3–10 ZnO–10 MO (MO = Li2O, Na2O, K2O, MgO, CaO, and PbO) were prepared by melt quenching method. The X-ray photoelectron spectroscopy (XPS) studies allow to monitor the structural modifications leading to the formation of bridging oxygens (Te–O–Te, B–O–B, Mo–O–Mo, and Te–O–Mo bonds) and nonbridging oxygens (Te = O, Te–OM+, Mo–O bonds in the MoO6 octahedral units, Zn–O bonds from ZnO4) with the addition of alkali (Li, Na, and K), alkaline (Mg, Ca), or heavy metal (Pb) oxides. The Te 3d localized core-levels spectra show an asymmetry due to the existence of different Te-based structural clusters and were fitted with three contributions such as Te ions in TeO4 trigonal bipyramid configuration, Te ions in TeO3 trigonal pyramid configuration and TeO3+1 polyhedra, respectively. The analysis of the Mo 3d spectra indicates prevailingly Mo6+ ions only. The Zn 2p core-level XPS spectra demonstrate that the zinc is mainly coordinated by four oxygen atoms. The essential radiation shielding parameters were studied for the prepared glasses in the photon energy range 1 keV to 100 GeV using WinXCom software program. Parameters like mass attenuation coefficient (μ/ρ), effective atomic number (Z eff), and mean free path (MFP) are evaluated. Further, by using geometric progression method, exposure buildup factor (EBF) values were also calculated in the incident photon energy range 0.015–15 MeV, up to penetration depth of 40 mfp (mean free path). The macroscopic effective removal cross sections (∑R) for fast neutrons have been calculated. The maximum values of μ/ρ and Z eff were found for PbO-introduced glass though it possesses a lower value for MFP and EBF. The obtained results indicate that PbO-based glass is the best radiation shielding material among the studied glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arbuzov VI, Nikonorov NV (2013) Neodymium, erbium and ytterbium laser glasses, chapter 5. In: Denker B, Shklovsky E (eds) Handbook of solid-state lasers: materials, systems and applications. A volume in Woodhead publishing series in electronic and optical materials. Woodhead Publishing Limited, Elsevier, Cambridge, pp 110–138

    Chapter  Google Scholar 

  2. Tanabe S (2002) Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C R Chim 5:815–824

    Article  Google Scholar 

  3. Jayasimhadri M, Jang K, Lee HS, Chen B, Yi S-S, Jeong J-H (2009) White light generation from Dy3+-doped ZnO–B2O3–P2O5 glasses. J Appl Phys 106:013105

    Article  Google Scholar 

  4. Chen B, Shen L, Lin H, Pun EYB (2011) Signal amplification in rare-earth doped heavy metal germanium tellurite glass fiber. J Opt Soc Am B 28:2320–2327

    Article  Google Scholar 

  5. Xia F, Liu S, Wang Y, Mao J, Li X, Wang Y, Chen G (2015) Fast and intense green emission of Tb3+ in borosilicate glass modified by Cu+. Sci Rep 5:1–7

    Google Scholar 

  6. Lu Y, Cai M, Cao R, Qian S, Xu S, Zhang J (2016) Er3+ doped germanate–tellurite glass for mid-infrared 2.7 μm fiber laser material. J Quant Spectrosc Radiat Trans 171:73–81

    Article  Google Scholar 

  7. Guo H, Wang Y, Gong Y, Yin H, Mo Z, Tang Y, Chi L (2016) Optical band gap and photoluminescence in heavily Tb3+ doped GeO2–B2O3–SiO2–Ga2O3 magneto-optical glasses. J Alloys Compd 686:635–640

    Article  Google Scholar 

  8. Pisarski WA, Pisarska J, Dominiak-Dzik G, Ryba-Romanowski W (2004) Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses. J Phys Condens Matter 16:6171–6184

    Article  Google Scholar 

  9. Rajesh D, Ratnakaram YC, Seshadri M, Balakrishna A (2012) Luminescence properties of Sm3+ impurities in strontium lithium bismuth borate glasses. AIP Conf Proc 1447:581–582

    Article  Google Scholar 

  10. Annapoorani K, Basavapoornima Ch, Suriya Murthy N, Marimuthu K (2016) Investigations on structural and luminescence behavior of Er3+ doped Lithium Zinc borate glasses for lasers and optical amplifier applications. J Non-Cryst Solids 447:273–282

    Article  Google Scholar 

  11. Pawar PP, Munishwar SR, Gedam RS (2016) Physical and optical properties of Dy3+/Pr3+ co-doped lithium borate glasses for W-LED. J Alloys Compd 660:347–355

    Article  Google Scholar 

  12. Oermann MR, Ebendorff-Heidepriem H, Li Y, Foo T-C, Monro TM (2009) Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum–tellurite glass. Opt Express 17:15578–15584

    Article  Google Scholar 

  13. Feng X, Shi J, Segura M, White NM, Kannan P, Calvez L, Zhang X, Brilland L, Loh WH (2013) Towards water-free tellurite glass fiber for 2–5 μm nonlinear applications. Fibers 1(3):70–81

    Article  Google Scholar 

  14. Shen S, Jha A, Liu X, Naftaly M, Bindra K, Bookey HJ, Kar AK (2002) Tellurite glasses for broadband amplifiers and integrated optics. J Am Ceram Soc 85:1391–1395

    Article  Google Scholar 

  15. Madden SJ, Vu KT (2012) High-performance integrated optics with tellurite glasses: status and prospects. Int J Appl Glass Sci 3:289–298

    Article  Google Scholar 

  16. Toney Fernandez T, Hernandez M, Sotillo B, Eaton SM, Jose G, Osellame R, Jha A, Fernandez P, Solis J (2014) Role of ion migrations in ultrafast laser written tellurite glass waveguides. Opt Express 22:15298–15304

    Article  Google Scholar 

  17. Desirena H, Schulzgen A, Sabet S, Ramos-Ortiz G, de la Rosa E, Peyghambarian N (2009) Effect of alkali metal oxides R2O (R = Li, Na, K, Rb and Cs) and network intermediate MO (M = Zn, Mg, Ba and Pb) in tellurite glasses. Opt Mater 31:784–789

    Article  Google Scholar 

  18. Lakshminarayana G, Kaky KM, Baki SO, Ye S, Lira A, Kityk IV, Mahdi MA (2016) Concentration dependent structural, thermal, and optical features of Pr3+-doped multicomponent tellurite glasses. J Alloys Compd 686:769–784

    Article  Google Scholar 

  19. Rada S, Culea M, Culea E (2008) Structure of TeO2·B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J Non-Cryst Solids 354:5491–5495

    Article  Google Scholar 

  20. Maheshvaran K, Marimuthu K (2012) Concentration dependent Eu3+ doped boro-tellurite glasses—Structural and optical investigations. J Lumin 132:2259–2267

    Article  Google Scholar 

  21. Kaur N, Khanna A, Krishna PSR (2014) Preparation and characterization of boro-tellurite glasses. AIP Conf Proc 1591:802–804

    Article  Google Scholar 

  22. Pandarinath MA, Upender G, Rao KN, Babu DS (2016) Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. J Non-Cryst Solids 433:60–67

    Article  Google Scholar 

  23. Mahraz ZAS, Sahar MR, Ghoshal SK (1072) Band gap and polarizability of boro-tellurite glass: influence of erbium ions. J Mol Struc 2014:238–241

    Google Scholar 

  24. Azlan MN, Halimah MK, Shafinas SZ, Daud WM (2015) Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater Express 5:211–218

    Article  Google Scholar 

  25. Chung WJ, Park BJ, Seo HS, Ahn JT, Choi YG (2006) Spontaneous Raman scattering bandwidth broadening of tellurite glasses with MoO3 or WO3. Chem Phys Lett 419:400–404

    Article  Google Scholar 

  26. Chung WJ, Choi YG (2010) 1.4 μm emission properties and local environments of Tm3+ ions in tellurite glass modified with MoO3. J Lumin 130:2175–2179

    Article  Google Scholar 

  27. Yuan J, Yang Q, Chen DD, Qian Q, Shen SX, Zhang QY, Jiang ZH (2012) Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier. J Appl Phys 111:103511-1–103511-6

    Google Scholar 

  28. Lakshminarayana G, Kaky KM, Baki SO, Lira A, Nayar P, Kityk IV, Mahdi MA (2017) Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J Alloys Compd 690:799–816

    Article  Google Scholar 

  29. Barney ER, Hannon AC, Holland D, Umesaki N, Tatsumisago M (2015) Alkali environments in tellurite glasses. J Non-Cryst Solids 414:33–41

    Article  Google Scholar 

  30. Leal JJ, Narro-García R, Desirena H, Marconi JD, Rodríguez E, Linganna K, De la Rosa E (2015) Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. J Lumin 162:72–80

    Article  Google Scholar 

  31. Sayyed MI, Qashou SI, Khattari ZY (2017) Radiation shielding competence of newly developed TeO2–WO3 glasses. J Alloys Compd 696:632–638

    Article  Google Scholar 

  32. Matori KA, Sayyed MI, Sidek HAA, Zaid MHM, Singh VP (2017) Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J Non-Cryst Solids 457:97–103

    Article  Google Scholar 

  33. Waly ESA, Fusco MA, Bourham MA (2016) Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann Nucl Energy 96:26–30

    Article  Google Scholar 

  34. Kaur K, Singh KJ, Anand V (2016) Structural properties of Bi2O3–B2O3–SiO2–Na2O glasses for gamma ray shielding applications. Radiat Phys Chem 120:63–72

    Article  Google Scholar 

  35. Chanthima N, Kaewkhao J (2013) Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann Nucl Energy 55:23–28

    Article  Google Scholar 

  36. Singh K, Singh H, Sharma G, Gerward L, Khanna A, Kumar R, Nathuram R, Sahota HS (2005) Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat Phys Chem 72:225–228

    Article  Google Scholar 

  37. Singh KJ, Kaur S, Kaundal RS (2014) Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat Phys Chem 96:153–157

    Article  Google Scholar 

  38. Gerward L, Guilbert N, Jensen KB, Levring H (2004) WinXCom—a program for calculating X-ray attenuation coefficients. Radiat Phys Chem 71:653–654

    Article  Google Scholar 

  39. Manohara SR, Hanagodimath SM, Thind KS, Gerward L (2010) The effective atomic number revisited in the light of modern photon-interaction cross-section databases. Appl Radiat Isot 68:784–787

    Article  Google Scholar 

  40. Manohara SR, Hanagodimath SM (2007) Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV. Nucl Instrum Methods Phys Res B 258:321–328

    Article  Google Scholar 

  41. Sayyed MI (2017) Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J Alloys Compd. 695:3191–3197

    Article  Google Scholar 

  42. Mavi B (2012) Experimental investigation of γ-ray attenuation coefficients for granites. Ann Nucl Energy 44:22–25

    Article  Google Scholar 

  43. Sayyed MI, Elmahroug Y, Elbashir BO, Issa SAM (2016) Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J Mater Sci Mater Electron. doi:10.1007/s10854-016-6022-z

    Google Scholar 

  44. Sayyed MI, Elhouichet H (2017) Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3–TeO2) glasses. Radiat Phys Chem 130:335–342

    Article  Google Scholar 

  45. Issa S, Sayyed M, Kurudirek M (2016) Investigation of gamma radiation shielding properties of some zinc tellurite glasses. J Phys Sci 27:97–119

    Article  Google Scholar 

  46. Elmahroug Y, Tellili B, Souga C (2014) Determination of shielding parameters for different types of resins. Ann Nucl Energy 63:619–623

    Article  Google Scholar 

  47. Profio AE (1979) Radiation shielding and dosimetry. Wiley, New York

    Google Scholar 

  48. Chilton AB, Shultis JK, Faw RE (1984) Principles of radiation shielding. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  49. Rivero C (2005) High gain/broadband oxide glasses for next generation Raman amplifiers”. Ph.D Thesis, University of Central Florida, USA. http://stars.library.ucf.edu/etd/611

  50. McGuire GE, Schweitzer GK, Carlson TA (1973) Core electron binding energies in some Group IIIA, VB, and VIB compounds. Inorg Chem 12:2450–2453

    Article  Google Scholar 

  51. Charton P, Gengembre L, Armand P (2002) TeO2–WO3 glasses: Infrared, XPS and XANES structural characterizations. J. Solid State Chem. 168:175–183

    Article  Google Scholar 

  52. Mekki A, Khattak GD, Wenger LE (2009) XPS and magnetic studies of vanadium tellurite glasses. J Electron Spectrosc Relat Phenom 175:21–26

    Article  Google Scholar 

  53. Babu S, Rajput P, Ratnakaram YC (2016) Compositional-dependent properties of Pr3+-doped multicomponent fluoro-phosphate glasses for visible applications: a photoluminescence study. J Mater Sci 51:8037–8054. doi:10.1007/s10853-016-0073-7

    Article  Google Scholar 

  54. Alhalawani AMF, Towler MR (2016) The effect of ZnO ↔ Ta2O5 substitution on the structural and thermal properties of SiO2–ZnO–SrO–CaO–P2O5 glasses. Mater. Charact 114:218–224

    Article  Google Scholar 

  55. Khattak GD, Salim MA (2002) X-ray photoelectron spectroscopic studies of zinc–tellurite glasses. J Electron Spectrosc Relat Phenom 123:47–55

    Article  Google Scholar 

  56. Speranza G, Ferrari M, Bettinelli M (1999) X-ray photoemission study of Pr3+ in zinc borate glasses. Philos Mag B 79:2145–2155

    Article  Google Scholar 

  57. Mekki A, Holland D, McConville CF, Salim M (1996) An XPS study of iron sodium silicate glass surfaces. J Non-Cryst Solids 208:267–276

    Article  Google Scholar 

  58. Heo J, Lam D, Sigel GH Jr, Mendoza EA, Hensley DA (1992) Spectroscopic analysis of the structure and properties of alkali tellurite glasses. J Am Ceram Soc 75:277–281

    Article  Google Scholar 

  59. Hoppe U, Yousef E, Russel C, Neuefeind J, Hannon AC (2002) Structure of vanadium tellurite glasses studied by neutron and X-ray diffraction. Solid State Commun. 123:273–278

    Article  Google Scholar 

  60. Sekiya T, Mochida N, Ohtsuka A, Tonokawa M (1992) Raman spectra of MO1/2–TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses. J Non-Cryst Solids 144:128–144

    Article  Google Scholar 

  61. Tanaka K, Yoko T, Yamada H, Kamiya K (1988) Structure and Ionic Conductivity of LiCI–Li2O–TeO2 glasses. J Non-Cryst Solids 103:250–256

    Article  Google Scholar 

  62. Chowdari BVR, Kumari PP (1996) Thermal, electrical and XPS studies of Ag2O·TeO2·P2O5 glasses. J Non-Cryst Solids 197:31–40

    Article  Google Scholar 

  63. Bachvarova-Nedelcheva A, Iordanova R, Kostov KL, Yordanov St, Ganev V (2012) Structure and properties of a non-traditional glass containing TeO2, SeO2 and MoO3. Opt Mater 34:1781–1787

    Article  Google Scholar 

  64. Salim MA, Khattak GD, Tabet N, Wenger LE (2003) X-ray photoelectron spectroscopy (XPS) studies of copper–sodium tellurite glasses. J Electron Spectrosc Relat Phenom 128:75–83

    Article  Google Scholar 

  65. Mekki A, Khattak GD, Wenger LE (2005) Structural and magnetic properties of MoO3–TeO2 glasses. J Non-Cryst Solids 351:2493–2500

    Article  Google Scholar 

  66. Moawad HMM, Jain H, El-Mallawany R, Ramadan T, El-Sharbiny M (2002) Electrical conductivity of silver vanadium tellurite glasses. J Am Ceram Soc 85:2655–2659

    Article  Google Scholar 

  67. Marjanovic S, Toulouse J, Jain H, Sandmann C, Dierolf V, Kortan AR, Kopylov N, Ahrens RG (2003) Characterization of new erbium-doped tellurite glasses and fibers. J Non-Cryst Solids 322:311–318

    Article  Google Scholar 

  68. Pal M, Hirota K, Tsujigami Y, Sakata H (2001) Structural and electrical properties of MoO3–TeO2 glasses. J Phys D Appl Phys 34:459–464

    Article  Google Scholar 

  69. Zatsepin DA, Zatsepin AF, Boukhvalov DW, Kurmaev EZ, Pchelkina ZV, Gavrilov NV (2016) Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. J Non-Cryst Solids 432(B):183–188

    Article  Google Scholar 

  70. Medda MP, Piccaluga G, Pinna G, Bettinelli M, Cormier G (1994) Coordination of Eu3+ ions in a phosphate glass by X-ray diffraction. Z. Naturforsch 49(a):977–982

    Google Scholar 

  71. Hurt JC, Phillips CJ (1970) Structural role of zinc oxide in glasses in the system Na2O–ZnO–SiO2. J Am Ceram Soc 53:269–273

    Article  Google Scholar 

  72. Bashter II (1997) Calculation of radiation attenuation coefficients for shielding concretes. Ann Nucl Energy 24:1389–1401

    Article  Google Scholar 

  73. Singh VP, Badiger NM, Kaewkhao J (2014) Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J Non-Cryst Solids 404:167–173

    Article  Google Scholar 

  74. Singh VP, Badiger NM (2015) Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys Chem 41:276–283

    Article  Google Scholar 

  75. Sayyed MI (2016) Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can J Phys 94:1133–1137

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Putra Malaysia (UPM), Malaysia, where part of the work is supported by UPM under GP-IPB/2014/9440702 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lakshminarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshminarayana, G., Baki, S.O., Lira, A. et al. X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters investigations for zinc molybdenum borotellurite glasses containing different network modifiers. J Mater Sci 52, 7394–7414 (2017). https://doi.org/10.1007/s10853-017-0974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0974-0

Keywords

Navigation