Skip to main content
Log in

Variable ultrafast optical nonlinearity in bacteriorhodopsin achieved through simple chemical treatment

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tunability of the third-order optical nonlinearity and optical limiting action of bacteriorhodopsin (BR) was achieved by altering the native structure through simple surfactant treatment like cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X-100. The variation in spectral position and intensity of the UV–visible absorption spectrum was due to aggregation (hyperchromic lipid absorption—280 nm), solubilization (redshift in chromophore absorption—600 nm, formation of retinal—396 nm) and monomerization (blueshift in chromophore absorption—553 nm) effects upon interaction with anionic, cationic and non-ionic surfactants. Further, changes in the Raman vibrational modes confirmed the alteration in C=C ethylenic chain and 13-cis retinal on surfactant treatment. Surfactant dose-dependent assay of nonlinear optical parameters was evaluated by using the Z-scan technique with ultrashort laser pulse excitation (800 nm, ~150 fs, 80 MHz). The closed aperture data demonstrated self-defocusing nature and notably higher monomerization (0.15–0.25 mM) effects endorsed sign reversal (self-defocusing to self-focusing) of the nonlinear refractive index coefficient. Bare BR exhibited saturable absorption, while reverse saturable absorption (RSA) was observed for all surfactant-treated samples (expect for 0.20 mM CTAB and 1.0 mM SDS). The observed RSA and optical limiting was ascribed due to two-photon absorption process. Interestingly, we observed that aggregation enhanced the nonlinear refraction, monomerization improved nonlinear absorption (NLA), and solubilization reduced the nonlinear optical (NLO) response of BR. The maximum nonlinear refractive index (n 2 = 8.78 × 10−19 m2/W) was observed for 0.20 mM CTAB, while the NLA coefficient (β = 4.40 × 10−12 m/W) and low optical limiting threshold (538 µJ/cm2) were observed to be highest for 0.25 mM TX-100 sample. The influence of aggregation, monomerization and solubilization effects of purple membrane in achieving the variation of the NLO coefficients is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mahyad B, Janfaza S, Hosseini ES (2015) Bio-nano hybrid materials based on bacteriorhodopsin: potential applications and future strategies. Adv Colloid Interface Sci 225:194–202

    Article  Google Scholar 

  2. Heyes CD, El-Sayed MA (2003) Thermal properties of bacteriorhodopsin. J Phys Chem B 107:12045–12053

    Article  Google Scholar 

  3. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1778

    Article  Google Scholar 

  4. Huang Y, Siganakis G, Moharam MG, Wu ST (2004) Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film. Appl Phys Lett 85:5445–5447

    Article  Google Scholar 

  5. Lewis A, Khatchatouriants A, Treinin M, Chen Z, Peleg G, Friedman N, Bouevitch O, Rothman Z, Loew L, Sheres M (1999) Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. Elegans Chem Phys 245:133–144

    Article  Google Scholar 

  6. Kobayashi T, Yabushita A, Saito A, Ohtani H, Tsuda M (2007) Sub-5-fs real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Photochem Photobiol 83:363–369

    Article  Google Scholar 

  7. Kobayashi T, Yabushita A (2008) Fs photo-isomerization in bacteriorhodopsin by few-cycle pulses. J Lumin 128:1038–1042

    Article  Google Scholar 

  8. Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song W, Schmidt E, Stuart J, Seetharaman S (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J Phys Chem B 103:10746–10766

    Article  Google Scholar 

  9. Imhof M, Rhinow D, Linne U, Hampp N (2012) Two-photon-induced selective decarboxylation of aspartic acids D85 and D212 in bacteriorhodopsin. Chem Phys Lett 3:2991–2994

    Article  Google Scholar 

  10. Birge RR, Zhang CF (1990) Two-photon double resonance spectroscopy of bacteriorhodopsin. J Chem Phys 92:7178–7195

    Article  Google Scholar 

  11. Bovino FA, Larciprete MC, Sibilia C, Varo G, Gergely C (2012) Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation. Opt Express 20:14621–14631

    Article  Google Scholar 

  12. Bovino FA, Larciprete MC, Leahu G, Sibilia C, Varo G, Gergely C (2013) Detection of second order nonlinear optical magnetization by mapping normalized stokes parameters. J Opt Soc Am B 30:568–575

    Article  Google Scholar 

  13. Grout MJ (2000) Application of bacteriorhodopsin for optical limiting eye protection filters. Opt Mater 14:155–160

    Article  Google Scholar 

  14. Houjou H, Inoue Y, Sakurai M (2001) Study of the opsin shift of bacteriorhodopsin: insight from QM/MM calculations with electronic polarization effects of the protein environment. J Phys Chem B 105:867–879

    Article  Google Scholar 

  15. Bezzera AG, Gomes ASL, de Melo CP, de Araujo CB (1997) Z-Scan measurements of the nonlinear refraction in retinal derivatives. Chem Phys Lett 276:445–449

    Article  Google Scholar 

  16. Mathesz A, Fábián L, Valkai S, Alexandre D, Marques PV, Ormos P, Wolff EK, Dér A (2013) High-speed integrated optical logic based on the protein bacteriorhodopsin. Biosens Bioelectron 46:48–52

    Article  Google Scholar 

  17. Song QW, Zhang C, Gross RB, Birge RR (1994) The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin. Opt Commun 112:296–301

    Article  Google Scholar 

  18. Kumar KA, Kumar S, Dharmaprakash SM, Das R (2016) Impact of α → β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films. J Phys Chem C120:6733–6740

    Google Scholar 

  19. Leppanen VP, Haring TJ, Jaaskelainen T, Vartiainen E, Parkkinen S, Parkkinen JPS (1999) The intensity dependent refractive index change of photochromic proteins. Opt Commun 163:189–192

    Article  Google Scholar 

  20. del Rayo M, Barmenkov YO, Kiryanov AV, Starodumov AN, Vanhanen J, Jaaskelainen T (2001) Application of the Z-scan technique to a saturable medium with excited state absorption. Laser Phys 11:502–506

    Google Scholar 

  21. Kir’yanov AV, Barmenkov YO, Starodumov AN, Leppanen AP, Vanhanen J, Jaaskelainen T (2000) Application of the Z-scan technique to a saturable medium with excited state absorption. Opt Commun 177:417–423

    Article  Google Scholar 

  22. Huang YH, Chen Z, Lewis A (1989) Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412. J Phys Chem 93:3314–3320

    Article  Google Scholar 

  23. Chu LK, El-Sayed MA (2010) Kinetics of the M-intermediate in the photocycle of bacteriorhodopsin upon chemical modification with surfactants. Photochem Photobiol 86:316–323

    Article  Google Scholar 

  24. Padrós E, Duñach M, Sabés M (1984) Induction of the blue form of bacteriohodopsin by low concentrations of sodium dodecyl sulfate. BBA 769:1–7

    Article  Google Scholar 

  25. Ng KC, Chu LK (2013) Effects of surfactants on the purple membrane and bacteriorhodopsin: Solubilization or aggregation? J Phys Chem B 117:6241–6249

    Article  Google Scholar 

  26. Rao DVGLN, Aranda FJ, Chen Z, Akkara JA, Kaplan DL, Nakashima M (1996) Nonlinear optical studies of bacteriorhodopsin. J Nonlinear Opt Phys Mater 5:331–349

    Article  Google Scholar 

  27. Rakovich A, Nabiev I, Sukhanova A, Lesnyak V, Gaponik N, Rakovich YP, Donegan JF (2013) Large enhancement of nonlinear optical response in a hybrid nanobiomaterial consisting of bacteriorhodopsin and cadmium telluride quantum dots. ACS Nano 7:2154–2160

    Article  Google Scholar 

  28. Grewal DS, Schultz T, Basti S, Dick HB (2016) Femtosecond laser-assisted cataract surgery—current status and future directions. Surv Ophthalmol 61:103–131

    Article  Google Scholar 

  29. Saravanan M, Sabari Girisun TC, Vinitha G, Rao SV (2016) Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation. RSC Adv 6:91083–91092

    Article  Google Scholar 

  30. Teng XL, Lu M, Zhao YY, Ma DW, Zhao YC, Ding JD (2010) Photoinduced nonlinear refraction in a polymeric film encapsulating a bacteriorhodopsin mutant. Appl Phys Lett 97:071109

    Article  Google Scholar 

  31. Sifuentes C, Barmenkov YO, Kir’yanov AV (2002) The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques. Opt Mater 19:433–442

    Article  Google Scholar 

  32. Yuhua H (1999) Optical absorption nonlinearity in bacteriorhodopsin. Acta Opt Sin 19:1469–1474

    Google Scholar 

  33. Song QW, Gross R, Birge RR, Zhang C (1993) Optical limiting by chemically enhanced bacteriorhodopsin films. Opt Lett 18:775–777

    Article  Google Scholar 

  34. Shiu PJ, Ju YH, Chen HM, Lee CK (2013) Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system protein. Expr Purif 89:219–224

    Article  Google Scholar 

  35. Jeganathan C, Pavithra N, Sabari Girisun TC, Anandan S, Ashokkumar M (2016) Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte. J Photochem Photobiol B 162:208–212

    Article  Google Scholar 

  36. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quant Electron 26:760–769

    Article  Google Scholar 

  37. Becher B, Tokunaga F, Ebrey TG (1978) Ultraviolet and visible absorption spectra of the purple membrane protein and the photocycle intermediates. Biochemistry 17:2293–2300

    Article  Google Scholar 

  38. Wang J, Link S, Heyes CD, El-Sayed MA (2002) Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Biophys J 83:1557–1566

    Article  Google Scholar 

  39. Aton B, Doukas AG, Callender RH, Becher B, Ebrey TG (1977) Resonance raman studies of the purple membrane. Biochemistry 16:2995–2999

    Article  Google Scholar 

  40. Hsieh CL, Nagumo M, Nicol M, El-Sayed MA (1981) Picosecond and nanosecond resonance raman studies of bacteriorhodopsin. Do configurational changes of retinal occur in picoseconds? J Phys Chem 85:2714–2717

    Article  Google Scholar 

  41. Rativa D, Da Silva SJS, Del Nero J, Gomes ASL, De Araujo RE (2010) Nonlinear optical properties of aromatic amino acids in the femtosecond regime. J Opt Soc Am B 27:2665–2668

    Article  Google Scholar 

  42. Reddy KPJ (1994) Passive mode locking of lasers using bacteriorhodopsin molecules. Appl Phys Lett 64:2776–2778

    Article  Google Scholar 

  43. Sharma P (2013) Photonic spectral modulation in bacteriorhodopsin molecules and optimization of signal wavelength. Optik 124:7003–7006

    Article  Google Scholar 

  44. Gnoli A, Razzari L, Righini M (2005) Z-scan measurements using high repetition rate lasers: how to manage thermal effects. Opt Express 13:7976–7981

    Article  Google Scholar 

  45. Makhal K, Mathur P, Maurya S, Goswami D (2017) Extracting third order optical nonlinearities of Mn(III)-Phthalocyanine chloride using high repetition rate femtosecond pulses. J Appl Phys 121(5):053103

    Article  Google Scholar 

  46. Swain D, Singh R, Singh VK, Krishna NV, Giribabu K, Rao SV (2014) Sterically demanding zinc(II) phthalocyanines: synthesis, optical, electrochemical, nonlinear optical, excited state dynamics studies. J Mater Chem C 2:1711–1722

    Article  Google Scholar 

  47. Khurgin JB, Sun G, Chen WT, Tsai W-Y, Tsai DP (2015) Ultrafast thermal nonlinearity. Sci Rep 5:17899

    Article  Google Scholar 

Download references

Acknowledgements

This work is the extension of project funded by the Department of Science and Technology, Government of India under the DST-SERB Start up Grant Scheme (Grant No. SB/FTP/PS-038/2014). Mr. C.J. wishes to thank University Grants Commission, Government of India for providing UGC-SAP (RFMS) fellowship to carry out his research work (Grant No. F.4-1/2006(BSR)/7-197/2007). We acknowledge Prof. M. Krishnan (Former Head), Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, for providing the ultracentrifugation facility. Dr. S.V. Rao thanks DRDO for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Sabari Girisun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeganathan, C., Sabari Girisun, T.C., Rao, S.V. et al. Variable ultrafast optical nonlinearity in bacteriorhodopsin achieved through simple chemical treatment. J Mater Sci 52, 6866–6878 (2017). https://doi.org/10.1007/s10853-017-0924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0924-x

Keywords

Navigation