Skip to main content
Log in

Effect of Charge and Dielectric Constant on Linear and Nonlinear Optical Properties of Two Dyes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The enhancement of nonlinear optical properties of dye with surfactant can be applied in photodynamic therapy and medicine. The nonlinear optical properties of alizarin red S and rhodamine B mixed with cationic and anionic surfactant are studied by Z-scan technique. The nonlinear absorption coefficient values of cationic dye (rhodamine B) in aqueous solution are reduced with the increase of anionic surfactant concentration, while the nonlinear absorption coefficient values are enhanced by the interaction between anionic dye (alizarin red S) with anionic surfactant. The nonlinear refractive index (n2) of cationic and anionic dye is reduced with an increase of surfactant concentration. The nonlinear absorption coefficient values of a rhodamine B-doped droplet is reduced by the increase of cationic surfactant in the water droplet. In general, the nonlinear absorption coefficient values are reduced with an increase of dye solubility, and the value of n2 is reduced with an increase of dye solubility in solution. The fluorescence intensity is higher when dye and surfactant have the same charge. This effect can be due to the increase of solubility of cationic (anionic) dye with an increase of anionic (cationic) surfactant in the solution. The reduction of nonlinear absorption coefficient values with an increase of droplet size can be due to the change of rhodamine B solubility in microemulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sharifi, Kh. Alizadeh, and S.M. Shavakandi, J. Mol. Liq. 247, 467 (2017).

    Article  Google Scholar 

  2. S.M. Shavakandi and S. Sharifi, Opt. Quant. Electron. 49, 1 (2017).

    Google Scholar 

  3. S.M. Shavakandi, Kh. Alizadeh, S. Sharifi, O. Marti, and M. Amirkhani, J. Phys. D Appl. Phys. 50, 155301 (2017).

    Article  Google Scholar 

  4. A. Azarpour, S. Sharifi, and M. Kazaei Nezhad, Optoelectron. Instrum. Data Process. 54, 32 (2018).

    Article  Google Scholar 

  5. A. Azarpour, S. Sharifi, and F. Rakhshanizadeh, J. Mol. Liq. 252, 279 (2018).

    Article  Google Scholar 

  6. N. Hashemi and G. Sun, Ind. Eng. Chem. Res. 49, 8347 (2010).

    Article  Google Scholar 

  7. N.O. Mchedlov-Petrossyan, N.A. Vodolazkaya, and A.O. Doroshenko, J. Fluoresc. 13, 235 (2003).

    Article  Google Scholar 

  8. A.R. Tehrani-Bagha and K. Holmberg, Materials 6, 580 (2013).

    Article  Google Scholar 

  9. H. Uchiyama, Y. Tokuoka, M. Abe, and K. Ogino, J. Colloid Interface Sci. 132, 88 (1989).

    Article  Google Scholar 

  10. A.R. Tehrani Bagha, H. Bahrami, B. Movassagh, and M. Arami, Dyes Pigm. 72, 331 (2007).

    Article  Google Scholar 

  11. E.R. Macedo, L. De Boni, L. Misoguti, C.R. Mendonca, and H.P. de Oliveira, Colloids Surf. A 392, 76 (2011).

    Article  Google Scholar 

  12. I.N. Kurniasih, H. Liang, P.Ch. Mohr, G.R. Khot, J.P. Rabe, and A. Mohr, Langmuir 31, 2639 (2015).

    Article  Google Scholar 

  13. P.A. Bhat, A.A. Dar, and Gh.M. Rather, J. Chem. Eng. Data 53, 1271 (2008).

    Article  Google Scholar 

  14. K. Iliopoulos, I. Guezguez, A.P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, A.N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraouia, Dyes Pigm. 101, 229 (2014).

    Article  Google Scholar 

  15. B. Kulyk, S. Taboukhat, H. Akdas-Kilig, J.-L. Fillaut, Y. Boughalebb, and B. Sahraoui, RSC Adv. 6, 84854 (2016).

    Article  Google Scholar 

  16. I. Rau, F. Kajzar, J. Luc, B. Sahraoui, and G. Boudebs, J. Opt. Soc. Am. B. 25, 1738 (2008).

    Article  Google Scholar 

  17. B. Kulyk, A.P. Kerasidou, L. Soumahoro, C. Moussallem, F. Gohier, P. Frère, and B. Sahraoui, RSC Adv. 6, 14439 (2016).

    Article  Google Scholar 

  18. B. Sahraoui and G. Rivoire, Opt. Commun. 138, 109 (1997).

    Article  Google Scholar 

  19. M. Fikry, M. Omar, and L.Z. Ismail, J. Fluoresc. 19, 741 (2009).

    Article  Google Scholar 

  20. F. Jimin, H. Xiuyan, Zh. Qian, Ch. Junhong, and W. Xun, Appl. Surf. Sci. 360, 994 (2016).

    Article  Google Scholar 

  21. F. Ding, W. Liu, J.-X. Diao, and Y. Suna, J. Hezard. Mater. 186, 352 (2011).

    Article  Google Scholar 

  22. F. Gul, A.M. Khan, S.S. Shah, and M.F. Nazar, Color. Technol. 126, 109 (2010).

    Article  Google Scholar 

  23. T. Xia, M. Sheik-Bahae, A.A. Said, D.J. Hagan, and E.W. Van Stryland, J. Nonlinear Opt. Phys. Mater. 3, 489 (1994).

    Article  Google Scholar 

  24. M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, Opt. Lett. 14, 955 (1989).

    Article  Google Scholar 

  25. X. Zheng, Y. Zhang, R. Chen, X. Cheng, Zh. Xu, and T. Jiang, Opt. Express 23, 15616 (2015).

    Article  Google Scholar 

  26. L. Zhang, Sh. Dong, and L. Zhu, Chem. Commun. 21, 1891 (2007).

    Article  Google Scholar 

  27. R. Li, N. Dong, Ch. Cheng, F. Ren, R. Hübner, J. Wang, Sh. Zhou, and F. Chen, ACS Omega 2, 1279 (2017).

    Article  Google Scholar 

  28. X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W.J. Blau, and J. Wang, Chemistry 23, 3321 (2017).

    Article  Google Scholar 

  29. I.V. Kityk, M. Guignard, V. Nazabal, X.H. Zhang, J. Troles, F. Smektala, B. Sahraoui, and G. Boudebs, Phys. B 391, 222 (2007).

    Article  Google Scholar 

  30. T. Jiang, R. Miao, J. Zhao, X. Zhongjie, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. Cheng, Chin. Opt. Lett. 17, 020005 (2019).

    Article  Google Scholar 

  31. Ke. Wei, T. Jiang, X. Zhongjie, J. Zhou, J. You, Y. Tang, H. Li, R. Chen, X. Zheng, S. Wang, K. Yin, Z. Wang, J. Wang, and X. Cheng, Laser Photonics Rev. 12, 1800128 (2018).

    Article  Google Scholar 

  32. B. Maity, A. Chatterjee, and D. Seth, RSC Adv. 5, 3814 (2015).

    Article  Google Scholar 

  33. M. Pourtabrizi, N. Shahtahmassebi, A. Kompany, and S. Sharifi, J. Fluoresc. 28, 323 (2018).

    Article  Google Scholar 

  34. S. Peyghami, S. Sharifi, F. Rakhshanizadeh, and Kh. Alizadeh, J. Mol. Liq. 246, 157 (2017).

    Article  Google Scholar 

  35. M. Stähelin, D.M. Burland, and J.E. Rice, Chem. Phys. Lett. 191, 245 (1992).

    Article  Google Scholar 

  36. J.N. Woodford, M.A. Pauley, and C.H. Wang, J. Phys. Chem. A 101, 1989 (1997).

    Article  Google Scholar 

  37. L.M.M. Nazário, T.A. Hatton, and J.P.S.G. Crespo, Langmuir 12, 6326 (1996).

    Article  Google Scholar 

  38. E. Ortí, P.M. Viruela, R. Viruela, F. Effenberger, V. Hernández, and J.T.L. Navarrete, J. Phys. Chem. A 109, 8724 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soheil Sharifi or Forough Rakhshanizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, S., Nezhad, M.K., Sangsefedi, S.A. et al. Effect of Charge and Dielectric Constant on Linear and Nonlinear Optical Properties of Two Dyes. J. Electron. Mater. 48, 4310–4323 (2019). https://doi.org/10.1007/s11664-019-07201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07201-x

Keywords

Navigation