Skip to main content
Log in

Immersion-plated Cu6Sn5/Sn composite film anode for lithium ion battery

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, a simple one-step immersion plating method is firstly used to prepare Cu6Sn5/Sn composite film electrode for lithium ion battery and thiourea (TU) is used as potential adjustment agent in the deposition process. The films with different morphologies are obtained by changing the content of tin(II) chloride (SnCl2). After a series of physical and electrochemical characterizations, the results demonstrate that the content of SnCl2 in the plating solution plays an important role in determining the morphology and component of film electrode. In the condition of SnCl2 6.5 g L−1, film electrode obtains both void space to accommodate volume expansion and stable structure which could inhibit abscission of active material from current collector. Therefore, the film electrode has an excellent areal capacity of 0.84 mA h cm−2 after 70 cycles. In comparison with reported Sn–Cu alloy planar film electrodes for lithium ion battery in recent decade, the film electrode in this work exhibits a higher areal capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  2. Idota Y, Kubota T, Matsufuji A, Maekwa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  Google Scholar 

  3. Huggins RA (1999) Lithium alloy negative electrodes. J Power Sources 81–82:13–19

    Article  Google Scholar 

  4. Kepler KD, Vaughey JT, Thackeray MM (1999) LixCu6Sn5 (0 < x < 13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem Solid State Lett 2:307–309

    Article  Google Scholar 

  5. Jiang QL, Xue RS, Jia MQ (2012) Electrochemical performance of Sn–Sb–Cu film anodes prepared by layer-by-layer electrodeposition. Appl Surf Sci 258:3854–3858

    Article  Google Scholar 

  6. Jiang QL, Hu DZ, Jia MQ, Xue RS (2014) Effect of heat treatment temperature on the electrochemical properties of SnSb-based Cu electrodes for lithium batteries. Appl Surf Sci 321:109–115

    Article  Google Scholar 

  7. Hu RZ, Zeng MQ, Zhu M (2009) Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochim Acta 54:2843–2850

    Article  Google Scholar 

  8. Deng Q, Huang Z, Dai X, Wang Y, Li Z, Li J (2015) Three-dimensional nanoporous and nanopillar composite Cu–Sn electrode for lithium-ion battery. J Solid State Electrochem 19:1765–1771

    Article  Google Scholar 

  9. Hu RZ, Zhang Y, Zhu M (2008) Microstructure and electrochemical properties of electron-beam deposited Sn–Cu thin film anodes for thin film lithium ion batteries. Electrochim Acta 53:3377–3385

    Article  Google Scholar 

  10. Polat DB, Lu J, Abouimrane A, Keles O, Amine K (2014) Nano columnar structured porous Cu–Sn thin film as anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:10877–10885

    Article  Google Scholar 

  11. Zhao HP, Jiang CY, He XM, Ren JG, Wan CR (2008) A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy process. Ionics 14:113–120

    Article  Google Scholar 

  12. Ju SH, Jang HC, Kang YC (2009) Electrochemical properties of Cu6Sn5 alloy powders directly prepared by spray pyrolysis. J Power Sources 189:163–168

    Article  Google Scholar 

  13. Shin HC, Liu ML (2005) Three-dimensional porous copper–tin alloy electrides for rechargeable lithium batteries. Adv Funct Mater 15:582–586

    Article  Google Scholar 

  14. Gu CD, Mai YJ, Zhou JP, You YH, Tu JP (2012) Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. J Power Sources 214:200–207

    Article  Google Scholar 

  15. Fan XY, Shi YX, Wang JJ, Wang J, Shi XY, Xu L, Gou L, Li DL (2013) Electrochemical synthesis and lithium storage performance of Sn–Cu alloy on three-dimensional porous Cu substrate. Solid State Ionics 237:1–7

    Article  Google Scholar 

  16. Arai S, Fukuoka R (2016) A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries. J Appl Electrochem 46:331–338

    Article  Google Scholar 

  17. Du Z, Zhang S, Jiang T, Bai Z (2010) Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance. Electrochim Acta 55:3537–3541

    Article  Google Scholar 

  18. Fan X, Tang XN, Ma DQ, Bi P, Jiang A, Zhu J, Xu XH (2014) Novel hollow Sn–Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem 18:1137–1145

    Article  Google Scholar 

  19. Xue L, Fu Z, Yao Y, Huang T, Yu A (2010) Three-dimensional porous Sn–Cu alloy anode for lithium-ion batteries. Electrochim Acta 55:7310–7314

    Article  Google Scholar 

  20. Han QG, Yi Z, Cheng Y, Wu YM, Wang LM (2016) Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries. RSC Adv 6:15279–15285

    Article  Google Scholar 

  21. Hwang HS, Yoon T, Jang J, Kim JJ, Ryu JH, Oh SM (2017) Carbon fabric as a current collector for electroless-plated Cu6Sn5 negative electrode for lithium-ion batteries. J Alloys Compd 692:583–588

    Article  Google Scholar 

  22. Huttunen-Saarivirta E (2002) Observations on the uniformity of immersion tin coatings on copper. Surf Coat Technol 160:288–294

    Article  Google Scholar 

  23. Molenaar A, de Bakker JWG (1989) Autocatalytic deposition of tin. J Electrochem Soc 136:378–382

    Article  Google Scholar 

  24. Zhao J, Li N, Fu SY (2006) Research process on electroless tin plating reaction mechanism. Electroplat Finish 25:44–47 (in Chinese)

    Google Scholar 

  25. Trahey L, Vaughey JT, Kung HH, Thackeray MM (2009) High-capacity, microporous Cu6Sn5–Sn anodes for li-ion batteries. J Electrochem Soc 156:A385–A389

    Article  Google Scholar 

  26. Nam DH, Kim RH, Han DW, Kwon HS (2012) Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochim Acta 66:126–132

    Article  Google Scholar 

  27. Uysal M, Cetinkaya T, Kartal M, Alp A, Akbulut H (2014) Production of Sn–Cu/MWCNT composite electrodes for Li-ion batteries by using electroless tin coating. Thin Solid Films 572:216–223

    Article  Google Scholar 

  28. Pu WH, He XM, Ren JG, Wan CR, Jiang CY (2005) Electrodeposition of Sn–Cu alloy anodes for lithium batteries. Electrochim Acta 50:4140–4145

    Article  Google Scholar 

  29. Zhao XY, Xia ZH, Xia DG (2010) Electrochemical performance of Sn film reinforced by Cu nanowire. Electrochim Acta 55:6004–6009

    Article  Google Scholar 

  30. Ke FS, Huang L, Cai JS, Sun SG (2007) Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries. Electrochim Acta 52:6741–6747

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (2016YFB0100511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shan, Z., Tian, J. et al. Immersion-plated Cu6Sn5/Sn composite film anode for lithium ion battery. J Mater Sci 52, 6020–6033 (2017). https://doi.org/10.1007/s10853-017-0841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0841-z

Keywords

Navigation