Skip to main content

Effect of Post-Heat Treatment on the Electrochemical Performance of Sandwich Structured Cu/Sn/Cu Electrode

  • Conference paper
TMS 2016 145th Annual Meeting & Exhibition
  • 2325 Accesses

Abstract

In this work, we have produced Cu/Sn/Cu sandwich structured film by electrodeposition method, to be used as a negative electrode for rechargeable lithium ion battery. To promote the interaction between Cu/Sn/Cu layers, an additional post-heat treatment (200°C, 48h under vacuum atmosphere) has been applied to the coatings. The galvanostatic test results prove that morphological changes and CuxSi intermetallics formation in the film as a result of heat treatment process promote the capacity retention of the electrode. After 30 cycle, the capacities of the Cu/Sn/Cu electrodes with and without heat treatments are 230 mAh g−1, 100 mAh g−1 respectively. This demonstrates that the post-heat treatment process improves cycle performance of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.O. Besenhard, ed., Handbook of Battery Material, (New York, NY: Wiley VCH, Inc. 1999), 450–457.

    Google Scholar 

  2. G. Derrien, J. Hassoun, S. Panero, B. Scrosati, “Nanostructured Sn-C Composite As An Advanced Anode Material In High-Performance Lithium-ion Batteries,” Adv Mater, 19 (17) (2007), 2336–2340.

    Article  Google Scholar 

  3. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, “High Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat Nanotechnol, 3 (1) (2008), 31–35.

    Article  Google Scholar 

  4. A.N. Dey, “Electrochemical Alloying Of Lithium İn Organic Electrolytes,” J Electrochem Soc, 118 (10) (1971), 1547–1549.

    Article  Google Scholar 

  5. I.A. Courtney, J.R. Dahn, “Electrochemical And İn Situ X-Ray Diffraction Studies Of The Reaction Of Lithium With Tin Oxide Composites,” J Electrochem Soc, 144 (1997), 2045.

    Article  Google Scholar 

  6. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma and T. Osaka, “Electrodeposited Sn-Ni Alloy Film As A High Capacity Anode Material For Lithium-Ion Secondary Batteries,” Electrochem Solid-State Lett, 6 (2003), A218.

    Article  Google Scholar 

  7. P. Wang, P. Li, T.F. Yi, X. Lin, Y.R. Zhu, L. Shao, M. Shui, N. Long, J. Shu, “Improved Lithium Storage Performance Of Lithium Sodium Titanate Anode By Titanium Site Substitution With Aluminum,” J Power Sources, 293 (2015), 33.

    Article  Google Scholar 

  8. G. Nazri and G. Pistoia, Lithium Batteries: Science and Technology (Boston, Springer, 2004), 704–815.

    Google Scholar 

  9. W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan, “Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries,” Adv Mater, 20 (6) (2008), 1160.

    Article  Google Scholar 

  10. H.Y. Wang, P. Gao, S.F. Lu, H.D. Liu, G Yang, J. Pinto, X.F. Jiang, “The Effect Of Tin Content To The Morphology Of Sn/Carbon Nanofiber And The Electrochemical Performance As Anode Material For Lithium Batteries,” Electrochim Acta, 58 (2011), 44.

    Article  Google Scholar 

  11. C.D. Gu, Y.J. Mai, J.P. Zhou, Y.H. You, J.P. Tu, “Non-Aqueous Electrodeposition Of Porous Tin-Based Film As An Anode For Lithium-Ion Battery,” J Power Sources, 214 (2012), 200.

    Article  Google Scholar 

  12. F. Wang, L. Chen, C. Deng, H. Ye, X. Jiang, G Yang, “Porous Tin Film Synthesized By Electrodeposition And The Electrochemical Performance For Lithium-Ion Batteries,” Electrochim Acta, 149 (2014), 330–336.

    Article  Google Scholar 

  13. W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan, “Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries,” Adv Mater, 20 (6) (2008), 1160–1165.

    Article  Google Scholar 

  14. S. Naille, M. Mouyane, M.E. Amraoui, P.E. Lippens, J.C. Jumas, J.O. Fourcade, “Lithium Insertion-Deinseterion Mechanism In NbSn2 Anode Studied By 119Sn Mössbauer Spectroscopy,” Hyperfine Interact, 187 (2008), 19–26.

    Article  Google Scholar 

  15. O. Mao, R.A. Dunlap, J.R. Dahn, “Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: I. The Sn2Fe-C System,” J Electrochem Soc, 146 (1999), 405.

    Article  Google Scholar 

  16. L.Y. Beaulieu, J.R. Dahn, “The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying,” J Electrochem Soc, 147 (2000), 3237.

    Article  Google Scholar 

  17. M.M. Thacheray, J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, L.M.L Fransson, K. Edstrom, “Structural Considerations Of Intermetallic Electrodes For Lithium Batteries,” J Power Sources, 113 (2003), 124–130.

    Article  Google Scholar 

  18. F. Wang, M. Zhao, X. Song, “Influence Of The Preparation Conditions On The Morphology And Electrochemical Performance Of Nano-Sized Cu-Sn Alloy Anodes,” J Alloy Compd, 439 (1) (2007), 249–253.

    Article  Google Scholar 

  19. Y. Xia, T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, “Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries,” J Electrochem Soc, 148 (5) (2001), A471–A481.

    Article  Google Scholar 

  20. K.F. Chiu, K.M. Lin, H.C. Lin, W.Y. Chen, D.T. Shieh, “Structural Evolution and Electrochemical Performance of Sputter-Deposited Cu6Sn5 Thin-Film Anodes,” J Electrochem. Soc, 154 (2007), A433.

    Article  Google Scholar 

  21. T.S. Lin, J.G. Duh, H.S. Sheu, “The Phase Transformations And Cycling Performance Of Copper-Tin Alloy Anode Materials Synthesized By Sputtering,” J Alloys Compnd, 509 (2011), 123.

    Article  Google Scholar 

  22. A. Kitada, N. Fukuda, T. Ichii, H. Sugimura, K. Murase, “Lithiation Behavior Of Single-Phase Cu-Sn Intermetallics And Effects On Their Negative-Electrode Properties,” Electrochim Acta, 98 (2013) 239– 243.

    Article  Google Scholar 

  23. N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, “Study On The Anode Behavior Of Sn And Sn-Cu Alloy Thin-Film Electrodes,” J Power Sources, 107 (2002), 48–50.

    Article  Google Scholar 

  24. H. Etschmaier, H. Torwesten, H. Eder, and P. Hadley, “Suppression of Interdiffusion in Copper/Tin Thin Films Journal of Materials Engineering and Performance,” J. Mater. Eng. Perform, 21 (8) (2012), 1724–1727.

    Article  Google Scholar 

  25. R.Z. Hu, M.Q. Zeng, M. Zhu, “Cyclic Durable High-Capacity Sn/Cu6Sn5 Composite Thin Film Anodes For Lithium Ion Batteries Prepared By Electron-Beam Evaporation Deposition,” Electrochim Acta, 54 (2009), 2843–2850.

    Article  Google Scholar 

  26. D.G Kim, H. Kim, H.-J. Sohn, T. Kang, “Nanosized Sn-Cu-B Alloy Anode Prepared By Chemical Reduction For Secondary Lithium Batteries,” J Power Sources, 104 (2) (2002), 221–225.

    Article  Google Scholar 

  27. J.Y. Kwona, J.H. Ryub, Y.S. Junga, S.M. Oh, “Thermo-Electrochemical Activation Of Cu3Sn Negative Electrode For Lithium-Ion Batteries,” J Alloys Compd, 509 (2011), 7595–7599.

    Article  Google Scholar 

  28. C.A. Steeves and N. A. Fleck, “Material Selection In Sandwich Beam Construction,” Scripta Mater, 50 (2004), 1335.

    Article  Google Scholar 

  29. D. Larcher, L.Y. Beaulieu, D.D. Macneil, J.R. Dahn, “In Situ X-Ray Study Of The Electrochemical Reaction of Li with η′-Cu6Sn5,” J Electrochem Soc, 147 (2000), 1658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Bilici, B., Polat, B.D., Keles, O. (2016). Effect of Post-Heat Treatment on the Electrochemical Performance of Sandwich Structured Cu/Sn/Cu Electrode. In: TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_90

Download citation

Publish with us

Policies and ethics