Skip to main content
Log in

Remarkably promoted low-temperature reducibility and thermal stability of CeO2–ZrO2–La2O3–Nd2O3 by a urea-assisted low-temperature (90 °C) hydrothermal procedure

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conventional co-precipitation combined with a urea-assisted low-temperature (90 °C) hydrothermal procedure (CZU) and the same method without urea (CZ) were used to prepare material CeO2–ZrO2–La2O3–Nd2O3. X-ray diffraction, Raman, nitrogen adsorption–desorption, transmission electron microscope, hydrogen-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy were employed to study the structural, textural, reduction behavior and surface elemental composition of the materials. The results reveal that, compared to CZ, CZU exhibits more outstanding structural property, higher thermal stability and higher low-temperature reducibility. The results also show that the stability of the reduction behavior is closely related to its surface chemical properties, especially the variation of the surface atomic ratio of Ce/Zr and the surface oxygen species. The possible mechanism of urea was also discussed in this study. In addition, with regard to corresponding Pd-only three-way catalysts, remarkably boosted catalytic performance of Pd/CZU is also obtained than that of Pd/CZ, and which suggests that CZU holds better prospective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal A Gen 221:443–457

    Article  Google Scholar 

  2. Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449

    Article  Google Scholar 

  3. Matsumoto SI (2004) Recent advances in automobile exhaust catalysts. Catal Today 90:183–190

    Article  Google Scholar 

  4. Kummer JT (1986) Use of noble metals in automobile exhaust catalysts. J Phys Chem 90:4747–4752

    Article  Google Scholar 

  5. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041

    Article  Google Scholar 

  6. Monte RD, Kašpar J (2004) On the role of oxygen storage in three-way catalysis. Top Catal 28:47–57

    Article  Google Scholar 

  7. Shinjoh H (2006) Rare earth metals for automotive exhaust catalysts. J Alloys Compd 408–412:1061–1064

    Article  Google Scholar 

  8. Melchionna M, Fornasiero P (2014) The role of ceria-based nanostructured materials in energy applications. Mater Today 17:349–357

    Article  Google Scholar 

  9. Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) Insights into the redox properties of ceria-based oxides and their implications in catalysis. J Alloys Compd 408–412:1096–1102

    Article  Google Scholar 

  10. Monte RD, Kašpar J (2005) Heterogeneous environmental catalysis—a gentle art: CeO2–ZrO2 mixed oxides as a case history. Catal Today 100:27–35

    Article  Google Scholar 

  11. Kašpar J, Fornasiero P, Grazinai M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298

    Article  Google Scholar 

  12. Wang R, Crozier PA, Sharma R, Adams JB (2006) Nanoscale heterogeneity in ceria zirconia with low-temperature redox properties. J Phys Chem B 110:18278–18285

    Article  Google Scholar 

  13. Fornasiero P, Fonda E, Monte RD, Vlaic G, Kašpar J, Graziani M (1999) Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides. J Catal 187:177–185

    Article  Google Scholar 

  14. Mamontov E, Brezny R, Koranne M, Egami T (2003) Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2. J Phys Chem B 107:13007–13014

    Article  Google Scholar 

  15. Dong F, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D (2004) Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2–ZrO2. Catal Today 93–95:827–832

    Article  Google Scholar 

  16. Hartmann P, Brezesinski T, Sann J, Lotnyk A, Eufinger JP, Kienle L, Janek J (2013) Defect chemistry of oxide nanomaterials with high surface area: ordered mesoporous thin films of the oxygen storage catalyst CeO2–ZrO2. ACS Nano 7:2999–3013

    Article  Google Scholar 

  17. Bulfin B, Lowe AJ, Keogh KA, Murphy BE, Lübben O, Krasnikov SA, Shvets IV (2013) Analytical model of CeO2 oxidation and reduction. J Phys Chem C 117:24129–24137

    Article  Google Scholar 

  18. Tsoncheva T, Ivanova R, Henych J, Dimitrov M, Kormunda M, Kovacheva D, Scotti N, Santo VD, Štengl V (2015) Effect of preparation procedure on the formation of nanostructured ceria–zirconia mixed oxide catalysts for ethyl acetate oxidation: homogeneous precipitation with urea vs template-assisted hydrothermal synthesis. Appl Catal A Gen 502:418–432

    Article  Google Scholar 

  19. Sellick DR, Aranda A, García T, López JM, Solsona B, Mastral AM, Morgan DJ, Carley AF, Taylor SH (2013) Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Appl Catal B Environ 132–133:98–106

    Article  Google Scholar 

  20. Lan L, Chen S, Cao Y, Zhao M, Gong M, Chen Y (2015) Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. J Colloid Interface Sci 450:404–416

    Article  Google Scholar 

  21. Kašpar J, Fornasiero P, Balducci G, Monte RD, Hickey N, Sergo V (2003) Effect of ZrO2 content on textural and structural properties of CeO2–ZrO2 solid solutions made by citrate complexation route. Inorg Chim Acta 349:217–226

    Article  Google Scholar 

  22. Vidmar P, Fornasiero P, Kašpar J, Gubitosa G, Graziani M (1997) Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J Catal 171:160–168

    Article  Google Scholar 

  23. Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) Raman scattering study of cubic-tetragonal phase transition in Zr1−xCexO2 solid solution. J Am Ceram Soc 77(4):1067–1071

    Article  Google Scholar 

  24. Arias AM, García MF, Ballesteros V, Salamanca LN, Conesa JC, Otero C, Soria J (1999) Characterization of high surface area Zr–Ce (1:1) mixed oxide prepared by a microemulsion method. Langmuir 15:4796–4802

    Article  Google Scholar 

  25. Kim DJ, Jung HJ (1993) Raman spectroscopy of tetragonal zirconia solid solutions. J Am Ceram Soc 76(8):2106–2108

    Article  Google Scholar 

  26. Kašpar J, Fornasiero P (2003) Nanostructured materials for advanced automotive de-pollution catalysts. J Solid State Chem 171:19–29

    Article  Google Scholar 

  27. Bumajdad A, Zaki MI, Eastoe J, Pasupulety L (2006) Characterization of nano-cerias synthesized in microemulsions by N2 sorptiometry and electron microscopy. J Colloid Interface Sci 302:501–508

    Article  Google Scholar 

  28. Lan L, Chen S, Zhao M, Gong M, Chen Y (2014) The effect of synthesis method on the properties and catalytic performance of Pd/Ce0.5Zr0.5O2–Al2O3 three-way catalyst. J Mol Catal A Chem 394:10–21

    Article  Google Scholar 

  29. Colo G, Pijolat M, Valdivieso F, Vidal H, Kašpar J, Finocchio E, Daturi M, Binet C, Lavalley JC, Bakerd RT, Bernald S (1998) Surface and structural characterization of CexZr1−xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters. J Chem Soc Faraday Trans 94:3717–3726

    Article  Google Scholar 

  30. Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) An XRD and TEM investigation of the structure of alumina-supported Ceria–Zirconia. J Catal 166:67–74

    Article  Google Scholar 

  31. Colón G, Valdivieso F, Pijolat M, Baker RT, Calvino JJ, Bernal S (1999) Textural and phase stability of CexZr1−xO2 mixed oxides under high temperature oxidizing conditions. Catal Today 50:271–284

    Article  Google Scholar 

  32. Zhou Y, Lan L, Gong M, Chen Y (2016) Modification of the thermal stability of doped CeO2–ZrO2 mixed oxides with the addition of triethylamine and its application as a Pd-only three-way catalyst. J Mater Sci 51:4283–4295. doi:10.1007/s10853-016-9733-x

    Article  Google Scholar 

  33. Ozaki T, Masui T, Machida K, Adachi G, Sakata T, Mori H (2000) Redox behavior of surface-modified CeO2–ZrO2 catalysts by chemical filing process. Chem Mater 12:643–649

    Article  Google Scholar 

  34. Li G, Wang Q, Zhao B, Zhou R (2010) Modification of Ce0.67Zr0.33O2 mixed oxides by coprecipitated/impregnated Co: effect on the surface and catalytic behavior of Pd only three-way catalyst. J Mol Catal A Chem 326:69–74

    Article  Google Scholar 

  35. Daturi M, Finocchio E, Binet C, Lavalley JC, Fally F, Perrichon V, Vidal H, Hickey N, Kašpar J (2000) Reduction of high surface area CeO2–ZrO2 mixed oxides. J Phys Chem B 104:9186–9194

    Article  Google Scholar 

  36. Vidal H, Kašpar J, Pijolat M, Colonb G, Bernal S, Cordón A, Perrichond V, Fally F (2000) Redox behavior of CeO2–ZrO2 mixed oxides I. Influence of redox treatments on high surface area catalysts. Appl Catal B Environ 27:49–63

    Article  Google Scholar 

  37. Vidmar P, Fornasiero P, Kašpar J, Gubitosa G, Graziani M (1997) Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J Catal 171:160–168

    Article  Google Scholar 

  38. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ 99:353–363

    Article  Google Scholar 

  39. Wu X, Xu L, Weng D (2004) The thermal stability and catalytic performance of Ce–Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl Surf Sci 221:375–383

    Article  Google Scholar 

  40. Balducci G, Fornasiero P, Kašpar J, Meriani S, Graziani M (1995) An unusual promotion of the redox behaviour of CeO2–ZrO2 solid solutions upon sintering at high temperatures. Catal Lett 33:193–200

    Article  Google Scholar 

  41. Shen M, Yang M, Wang J, Wen J, Zhao M, Wang W (2009) Pd/Support interface-promoted Pd–Ce0.7Zr0.3O2–Al2O3 automobile three-way catalysts: studying the dynamic oxygen storage capacity and co, C3H8, and NO conversion. J Phys Chem C 113:3212–3221

    Article  Google Scholar 

  42. Pappacena A, Schermanz K, Sagar A, Aneggi E, Trovarelli A (2010) Development of a modified co-precipitation route for thermally resistant, high surface area ceria-zirconia based solid solutions. Stud Surf Sci Catal 175:835–838

    Article  Google Scholar 

  43. Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G (1998) The preparation of high surface area CeO2–ZrO2 mixed oxides by a surfactant-assisted approach. Catal Today 43:79–88

    Article  Google Scholar 

  44. Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G (1998) The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J Catal 178:299–308

    Article  Google Scholar 

  45. Wang HC, Lu CH (2002) Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique. Mater Res Bull 37:783–792

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Hi-tech Research and Development Program of China (863, 2015AA034603) for their generous financial supports to our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianli Wang or Yaoqiang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Deng, J., Lan, L. et al. Remarkably promoted low-temperature reducibility and thermal stability of CeO2–ZrO2–La2O3–Nd2O3 by a urea-assisted low-temperature (90 °C) hydrothermal procedure. J Mater Sci 52, 5894–5907 (2017). https://doi.org/10.1007/s10853-017-0825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0825-z

Keywords

Navigation