Skip to main content
Log in

Efficient nitrite-to-ammonia electroreduction over Zr-Ni frustrated Lewis acid-base pairs

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical NO2-to-NH3 conversion (NO2RR) offers a green route to NH3 electrosynthesis, while developing efficient NO2RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO2RR performance with industrial-level current density (>0.2 A cm−2). In situ spectroscopic measurements and theoretical simulations reveal the construction of Zr-Ni frustrated Lewis acid-base pairs (FLPs) on Zr-NiO, which can substantially increase the number of absorbed nitrite (NO2), promote the activation and protonation of NO2 and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO2RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH3 of 94.0% and NH3 yield rate of 1,394.1 µmol h−1 cm−2 at an industrial-level current density of 228.2 mA cm−2, placing it among the best NO2RR electrocatalysts for NH3 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen K, Tian Y, Li Y, Liu Y, Chu K. J Mater Chem A, 2023, 11: 7409–7414

    Article  CAS  Google Scholar 

  2. Chu K, Li X, Li Q, Guo Y, Zhang H. Small, 2021, 17: 2102363

    Article  CAS  Google Scholar 

  3. Zhang G, Li X, Chen K, Guo Y, Ma D, Chu K. Angew Chem Int Ed, 2023, 62: e202300054

    Article  CAS  Google Scholar 

  4. Luo Y, Chen K, Wang G, Zhang G, Zhang N, Chu K. Inorg Chem Front, 2023, 10: 1543–1551

    Article  CAS  Google Scholar 

  5. Ren Z, Chen Q, Zhang J, An X, Liu Q, Xie L, Yao W, Sun X, Kong Q. Mater Today Phys, 2023, 36: 101162

    Article  CAS  Google Scholar 

  6. Li X, Shen P, Li X, Ma D, Chu K. ACS Nano, 2023, 17: 1081–1090

    Article  CAS  Google Scholar 

  7. Chen K, Zhang Y, Xiang J, Zhao X, Li X, Chu K. ACS Energy Lett, 2023, 8: 1281–1288

    Article  CAS  Google Scholar 

  8. Qiu H, Chen Q, Zhang J, An X, Liu Q, Xie L, Yao W, Sun X, Kong Q. Inorg Chem Front, 2023, 10: 3909–3915

    Article  CAS  Google Scholar 

  9. Clark CA, Reddy CP, Xu H, Heck KN, Luo G, Senftle TP, Wong MS. ACS Catal, 2020, 10: 494–509

    Article  CAS  Google Scholar 

  10. He X, Li X, Fan X, Li J, Zhao D, Zhang L, Sun S, Luo Y, Zheng D, Xie L, Asiri AM, Liu Q, Sun X. ACS Appl Nano Mater, 2022, 5: 14246–14250

    Article  CAS  Google Scholar 

  11. Fan X, He X, Ji X, Zhang L, Li J, Hu L, Li X, Sun S, Zheng D, Luo Y, Wang Y, Xie L, Liu Q, Ying B, Sun X. Inorg Chem Front, 2023, 10: 1431–1435

    Article  CAS  Google Scholar 

  12. He X, Hu L, Xie L, Li Z, Chen J, Li X, Li J, Zhang L, Fang X, Zheng D, Sun S, Zhang J, Ali Alshehri A, Luo Y, Liu Q, Wang Y, Sun X. J Colloid Interface Sci, 2023, 634: 86–92

    Article  CAS  PubMed  Google Scholar 

  13. Liang J, Li Z, Zhang L, He X, Luo Y, Zheng D, Wang Y, Li T, Yan H, Ying B, Sun S, Liu Q, Hamdy MS, Tang B, Sun X. Chem, 2023, 9: 1768–1827

    Article  CAS  Google Scholar 

  14. Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Pöschl U. Science, 2011, 333: 1616–1618

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Wang Y, Han L, Wang S, Cui T, Yan Y, Xu M, Duan H, Kuang Y, Sun X. Angew Chem Int Ed, 2023, 62: e202213711

    Article  CAS  Google Scholar 

  16. Liang J, Deng B, Liu Q, Wen G, Liu Q, Li T, Luo Y, Alshehri AA, Alzahrani KA, Ma D, Sun X. Green Chem, 2021, 23: 5487–5493

    Article  CAS  Google Scholar 

  17. Ma Y, Song X, Ge X, Zhang H, Wang G, Zhang Y, Zhao H. J Mater Chem A, 2017, 5: 4726–4736

    Article  CAS  Google Scholar 

  18. Li X, Ping J, Ying Y. TrAC Trends Anal Chem, 2019, 113: 1–12

    Article  CAS  Google Scholar 

  19. Song W, Yue L, Fan X, Luo Y, Ying B, Sun S, Zheng D, Liu Q, Hamdy MS, Sun X. Inorg Chem Front, 2023, 10: 3489–3514

    Article  CAS  Google Scholar 

  20. Wang H, Zhang F, Jin M, Zhao D, Fan X, Li Z, Luo Y, Zheng D, Li T, Wang Y, Ying B, Sun S, Liu Q, Liu X, Sun X. Mater Today Phys, 2023, 30: 100944

    Article  CAS  Google Scholar 

  21. Liu Q, Wen G, Zhao D, Xie L, Sun S, Zhang L, Luo Y, Ali Alshehri A, Hamdy MS, Kong Q, Sun X. J Colloid Interface Sci, 2022, 623: 513–519

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Wang C, Li M, Yu Y, Zhang B. Chem Soc Rev, 2021, 50: 6720–6733

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Angew Chem Int Ed, 2022, 61: e202202604

    Article  CAS  Google Scholar 

  24. Yi L, Shao P, Li H, Zhang M, Peng X, Chen K, Liu X, Wen Z. J Power Sources, 2023, 559: 232668

    Article  CAS  Google Scholar 

  25. Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M. Catal Today, 2017, 286: 2–13

    Article  CAS  Google Scholar 

  26. Liu M, Ji Y, Li Y, An P, Zhang J, Yan J, Liu SF. Small, 2021, 17: 2102448

    Article  CAS  Google Scholar 

  27. Ouyang L, Fan X, Li Z, He X, Sun S, Cai Z, Luo Y, Zheng D, Ying B, Zhang J, Alshehri AA, Wang Y, Ma K, Sun X. Chem Commun, 2023, 59: 1625–1628

    Article  CAS  Google Scholar 

  28. Hu L, Zhao D, Liu C, Liang Y, Zheng D, Sun S, Li Q, Liu Q, Luo Y, Liao Y, Xie L, Sun X. Inorg Chem Front, 2022, 9: 6075–6079

    Article  CAS  Google Scholar 

  29. Cai Z, Ma C, Zhao D, Fan X, Li R, Zhang L, Li J, He X, Luo Y, Zheng D, Wang Y, Ying B, Sun S, Xu J, Lu Q, Sun X. Mater Today Energy, 2023, 31: 101220

    Article  CAS  Google Scholar 

  30. Liu Q, Liu Q, Xie L, Yue L, Li T, Luo Y, Li N, Tang B, Yu L, Sun X. Chem Commun, 2022, 58: 5160–5163

    Article  CAS  Google Scholar 

  31. Wang J, Liang J, Liu P, Yan Z, Cui L, Yue L, Zhang L, Ren Y, Li T, Luo Y, Liu Q, Zhao XE, Li N, Tang B, Liu Y, Gao S, Asiri AM, Hao H, Gao R, Sun X. J Mater Chem A, 2022, 10: 2842–2848

    Article  CAS  Google Scholar 

  32. Hao J, Zhang Y, Zhang L, Shen J, Meng L, Wang X. Chem Eng J, 2023, 464: 142536

    Article  CAS  Google Scholar 

  33. Nie Y, Yang T, Luo D, Liu Y, Ma Q, Yang L, Yao Y, Huang R, Li Z, Akinoglu EM, Wen G, Ren B, Zhu N, Li M, Liao H, Tan L, Wang X, Chen Z. Adv Energy Mater, 2023, 13: 2204218

    Article  CAS  Google Scholar 

  34. Meng G, Lan W, Zhang L, Wang S, Zhang T, Zhang S, Xu M, Wang Y, Zhang J, Yue F, Wu Y, Wang D. J Am Chem Soc, 2023, 145: 12884–12893

    Article  CAS  PubMed  Google Scholar 

  35. Liu LL, Cao LL, Shao Y, Ménard G, Stephan DW. Chem, 2017, 3: 259–267

    Article  CAS  Google Scholar 

  36. Huang ZQ, Li TH, Yang B, Chang CR. Chin J Catal, 2020, 41: 1906–1915

    Article  CAS  Google Scholar 

  37. Lee JW, Kim HS, Park NG. Acc Chem Res, 2016, 49: 311–319

    Article  PubMed  Google Scholar 

  38. Paradies J. Coord Chem Rev, 2019, 380: 170–183

    Article  CAS  Google Scholar 

  39. Yan Y, Lin J, Xu T, Liu B, Huang K, Qiao L, Liu S, Cao J, Jun SC, Yamauchi Y, Qi J. Adv Energy Mater, 2022, 12: 2200434

    Article  CAS  Google Scholar 

  40. Li S, Fu Z, Wei X, Cheng J. Chem Phys Lett, 2023, 827: 140697

    Article  CAS  Google Scholar 

  41. Chandekar KV, Palanivel B, Alkallas FH, Trabelsi ABG, Khan A, Ashraf IM, AlFaify S, Shkir M. J Phys Chem Solids, 2023, 178: 111345

    Article  CAS  Google Scholar 

  42. Liu S, Cui L, Yin S, Ren H, Wang Z, Xu Y, Li X, Wang L, Wang H. Appl Catal B-Environ, 2022, 319: 121876

    Article  CAS  Google Scholar 

  43. Chen K, Wang J, Kang J, Lu X, Zhao X, Chu K. Appl Catal B-Environ, 2023, 324: 122241

    Article  CAS  Google Scholar 

  44. Zhang N, Zhang G, Shen P, Zhang H, Ma D, Chu K. Adv Funct Mater, 2023, 33: 2211537

    Article  CAS  Google Scholar 

  45. Chu K, Luo Y, Shen P, Li X, Li Q, Guo Y. Adv Energy Mater, 2022, 12: 2103022

    Article  CAS  Google Scholar 

  46. Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Lei F, Li L, Chan AWM, Xu L, Shi Y, Du Y, Hao W, Wong PK, Wang J, Dou SX, Zhang L, Yu JC. J Am Chem Soc, 2020, 142: 7036–7046

    Article  CAS  PubMed  Google Scholar 

  47. Mi L, Huo Q, Cao J, Chen X, Yang H, Hu Q, He C. Adv EnergyMater, 2022, 12: 2202247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52161025) and the Natural Science Foundation of Gansu Province (20JR10RA241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Z., Du, W. et al. Efficient nitrite-to-ammonia electroreduction over Zr-Ni frustrated Lewis acid-base pairs. Sci. China Chem. 67, 1707–1714 (2024). https://doi.org/10.1007/s11426-023-1924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1924-7

Navigation