Skip to main content
Log in

Tunable band gaps in stanene/MoS2 heterostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

First-principles calculations have been performed to investigate the geometric and electronic properties of stanene layer paired with monolayer MoS2 substrate with van der Waals corrections. It is found that the stanene can absorb on the monolayer MoS2 substrate forming stanene/MoS2 heterostructures, indicating a weak interface interaction. The Dirac point of stanene is still preserved on MoS2 substrate, and the band gap is opened about 67 meV due to the influence of the substrate. Moreover, the band gap is able to be effectively modulated under an external strain and a perpendicular electric field. These results are helpful for exploring the tunability of the electronic properties of stanene absorbed on semiconducting substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Vogt P, Padova PD, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Lay GL (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108(15):5501–5505

    Article  Google Scholar 

  2. Dávila ME, Xian L, Cahangirov S, Rubio A, Lay GL (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16(9):5002–5011

    Article  Google Scholar 

  3. Xu Y, Yan B, Zhang HJ, Wang J, Xu G, Tang P, Zhang SC (2013) Large-gap quantum spin Hall insulators in tin films. Phys Rev Lett 111(13):6804–6808

    Article  Google Scholar 

  4. Wang M, Liu L, Liu CC, Yao Y (2016) van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls. Phys Rev B 93(15):5412–5419

    Google Scholar 

  5. Zhu FF, Chen WJ, Xu Y, Gao CL, Guan DD, Liu CH, Jia JF (2015) Epitaxial growth of two-dimensional stanine. Nat Mater 14:1020–1025

    Article  Google Scholar 

  6. X. Qian, Y. Wang, W. Li, J. Lu, J. Li (2015) Modelling of stacked 2D materials and devices. 2D Mater 2(3): 2003

  7. Wang Y, Ni Z, Liu Q, Quhe R, Zheng J, Ye M, Lu J (2015) All-metallic vertical transistors based on stacked dirac materials. Adv Funct Mater 25(1):68–77

    Article  Google Scholar 

  8. Zhu J, Schwingenschlögl U (2015) Stability and electronic properties of silicene on WSe2. J Mater Chem C 3(16):3946–3953

    Article  Google Scholar 

  9. Shao L, Chen G, Ye H, Wu Y, Niu H, Zhu Y (2014) Electronic properties of MoS2 sandwiched between graphene monolayers. EPL-Europhys Lett 106(4):7003–7008

    Article  Google Scholar 

  10. Gao N, Li JC, Jiang Q (2014) Tunable band gaps in silicone-MoS2 heterobilayers. Phys Chem Chem Phys 16(23):11673–11678

    Article  Google Scholar 

  11. Li X, Wu S, Zhou S, Zhu Z (2014) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res Lett 9:110–118

    Article  Google Scholar 

  12. Yu L, Lee YH, Ling X, Santos EJ, Shin YC, Lin Y, Palacios T (2014) Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett 14(6):3055–3063

    Article  Google Scholar 

  13. Li XD, Wu SQ, Zhu ZZ (2015) Band gap control and transformation of monolayer-MoS2-based hetero-bilayers. J Mater Chem C 3(36):9403–9411

    Article  Google Scholar 

  14. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    Article  Google Scholar 

  15. Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114(20):7827–7843

    Article  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 78(7):1396

    Article  Google Scholar 

  17. Modarresi M, Kakoee A, Mogulkoc Y, Roknabadi MR (2015) Effect of external strain on electronic structure of stanene. Comp Mater Sci 101:164–167

    Article  Google Scholar 

  18. Lebegue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79(11):5409

    Article  Google Scholar 

  19. Hu W, Li Z, Yang J (2013) Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. J Chem Phys 139(15):4704

    Article  Google Scholar 

  20. Hu W, Wang T, Yang J (2014) Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites. J Mater Chem A 3(18):4756–4761

    Google Scholar 

  21. Cai Y, Chuu CP, Wei CM, Chou MY (2013) Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys Rev B 88(24):5408

    Article  Google Scholar 

  22. Neek-Amal M, Sadeghi A, Berdiyorov GR, Peeters FM (2013) Realization of free-standing silicene using bilayer graphene. Appl Phys Lett 103(26):1904

    Article  Google Scholar 

  23. Li SS, Zhang CW, Ji WX (2015) Novel electronic properties in silicene on MoSe2 monolayer: an excellent prediction for FET. Mater Chem Phy 164:150–156

    Article  Google Scholar 

  24. Kadantsev ES, Hawrylak P (2012) Electronic structure of a single MoS2 monolayer. Solid State Commun 152(10):909–913

    Article  Google Scholar 

  25. Liu X, Li Z (2015) Electric field and strain effect on graphene-MoS2 hybrid structure: ab initio calculations. J Phys Chem Lett 6(16):3269–3275

    Article  Google Scholar 

  26. Li W, Wang T, Dai X, Wang X, Zhai C, Ma Y, Chang S (2016) Bandgap engineering of different stacking WS2 bilayer under an external electric field. Solid State Commun 225:32–37

    Article  Google Scholar 

  27. Yan JA, Gao SP, Stein R, Coard G (2015) Tuning the electronic structure of silicene and germanene by biaxial strain and electric field. Phys Rev B 91(24):5403

    Article  Google Scholar 

  28. Li XR, Dai Y, Ma YD, Liu QQ, Huang BB (2015) Intriguing electronic properties of two-dimensional MoS2/TM2CO2 (TM = Ti, Zr, or Hf) hetero-bilayers: type-II semiconductors with tunable band gaps. Nanotechnology 26(13):5703–5709

    Article  Google Scholar 

  29. Li YF, Chen ZF (2014) Tuning electronic properties of germanane layers by external electric field and biaxial tensile strain: a computational study. J Phys Chem C 118(2):1148–1154

    Article  Google Scholar 

  30. Khoo KH, Mazzoni MSC, Louie SG (2004) Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: a giant dc Stark effect. Phys Rev B 69(20):1401–1403

    Article  Google Scholar 

  31. Park CH, Louie Steven G (2008) Energy gaps and stark effect in boron nitride nanoribbons. Nano Lett 8(8):2200–2203

    Article  Google Scholar 

  32. Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer transition-metal dichalcogenides. Phys Rev B 84(20):5325–5334

    Article  Google Scholar 

  33. Liu QH, Li LZ, Li YF, Gao ZX, Chen ZF, Lu J (2012) Tuning electronic structure of bilayer MoS2 by vertical electric field: a first-principles investigation. J Phys Chem C 116(40):21556–21562

    Article  Google Scholar 

  34. Zhou S, Zhao JJ (2016) Electronic structures of germanene on MoS2: effect of substrate and molecular adsorption. J Phys Chem C 120(38):21691–21698

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61675032), the National Basic Research Program of China (973 Program) under Grant No. 2014CB643900, the Open Program of State Key Laboratory of Functional Materials for Informatics, and the Shanghai Pujiang Program (Grant No. 14PJ1410600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., He, H., Lu, P. et al. Tunable band gaps in stanene/MoS2 heterostructures. J Mater Sci 52, 5799–5806 (2017). https://doi.org/10.1007/s10853-017-0817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0817-z

Keywords

Navigation