Skip to main content
Log in

Tuning mesoporous silica dissolution in physiological environments: a review

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Matrix degradation has a major impact on the release kinetics of drug delivery systems. Regarding ordered mesoporous silica materials for biomedical applications, their dissolution is an important parameter that should be taken into consideration. In this paper, we review the main factors that govern the mesoporous silica dissolution in physiological environments. We also provide the necessary knowledge to researchers in the area for tuning the dissolution rate of those matrices, so the degradation could be controlled and the material behaviour optimised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311

    Article  Google Scholar 

  2. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558

    Article  Google Scholar 

  3. Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117:1–9

    Article  Google Scholar 

  4. Manzano M, Colilla M, Vallet-Regí M (2009) Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv 6:1–18

    Article  Google Scholar 

  5. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41:3679–3698

    Article  Google Scholar 

  6. Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM (2006) Revisiting silica-based ordered mesoporous materials: medical applications. J Mater Chem 16:26–31

    Article  Google Scholar 

  7. Vallet-Regí M, Colilla M, Izquierdo-Barba I (2008) Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. J Biomed Nanotechnol 4:1–15

    Google Scholar 

  8. Vallet-Regí M, Colilla M, González B (2011) Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40:596–607

    Article  Google Scholar 

  9. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  10. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  Google Scholar 

  11. Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsum T (2004) Synthesis and characterization of chiral mesoporous silica. Nature 429:281–284

    Article  Google Scholar 

  12. Yamauchi Y, Suzukia N, Kimura T (2009) Formation of mesoporous oxide fibers in polycarbonate confined spaces. Chem Commun 38:5689–5691

    Article  Google Scholar 

  13. Yu CZ, Fan J, Tian BZ, Zhao D, Stucky GD (2002) High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater 14:1742–1745

    Article  Google Scholar 

  14. Kosuge K, Sato T, Kikukawa N, Takemori M (2004) Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater 16:899–905

    Article  Google Scholar 

  15. Soler-Illia GJAA, Innocenzi P (2006) Mesoporous hybrid thin films: the physics and chemistry beneath. Chem Eur J 12:4478–4494

    Article  Google Scholar 

  16. Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737

    Article  Google Scholar 

  17. Melosh NA, Davidson P, Chmelka BF (2000) Monolithic mesophase silica with large ordering domains. J Am Chem Soc 122:823–829

    Article  Google Scholar 

  18. Naik SP, Fan W, Yokoi T, Okubo T (2006) Synthesis of a three-dimensional cubic mesoporous silica monolith employing an organic additive through an evaporation-induced self-assembly process. Langmuir 22:6391–6397

    Article  Google Scholar 

  19. Schacht S, Huo Q, Voigt-Martin IG, Stucky GD, Schüth F (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273:768–771

    Article  Google Scholar 

  20. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    Article  Google Scholar 

  21. Vallet-Regí M, Ruiz-Hernández E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23:5177–5218

    Article  Google Scholar 

  22. Wu KC-W, Yamauchi Y (2012) Controlling physical features of mesoporous silica nanoparticles (MSN) for emerging applications. J Mater Chem 22:1251–1256

    Article  Google Scholar 

  23. Colilla M, González B, Vallet-Regí M (2013) Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater Sci 1:114–134

    Article  Google Scholar 

  24. Baeza A, Colilla M, Vallet-Regí M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12:319–337

    Article  Google Scholar 

  25. Castillo RR, Colilla M, Vallet-Regí M (2016) Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv. doi:10.1080/17425247.2016.1211637

    Google Scholar 

  26. Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3):169–174

    Article  Google Scholar 

  27. Vallet-Regí M (2014) Bio-ceramics with clinical applications. Wiley, Chichester

    Book  Google Scholar 

  28. Terasaki O, Ohsuna T, Liu Z, Sakamoto Y, Garcia-Bennett AE (2004) Structural study of mesoporous materials by electron microscopy. Stud Surf Sci Catal 148:261–288

    Article  Google Scholar 

  29. Czuryszkiewicz T, Ahvenlammi J, Kortesuo P, Ahola M, Kleitz F, Jokinen M, Lindén M, Rosenholm JB (2002) Drug release from biodegradable silica fibers. J Non Cryst Solids 306:1–10

    Article  Google Scholar 

  30. Viitala R, Jokinen M, Tuusa S, Rosenholm JB, Jalonen HJ (2005) Adjustably bioresorbable sol–gel derived SiO2 matrices for release of large biologically active molecules. Sol Gel Sci Technol 36:147–156

    Article  Google Scholar 

  31. Kortesuo P, Ahola M, Kangas M, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) In vitro evaluation of sol–gel processed spraydried sillica gel microspheres as carrier in controlled drugdelivery. Int J Pharm 200:223–229

    Article  Google Scholar 

  32. Jokinen M, Peltola T, Veittola S, Rahiala H, Rosenholm JB (2000) Adjustable biodegradation for ceramic fibres derived from silica sols. J Eur Ceram Soc 20:1739–1748

    Article  Google Scholar 

  33. Izquierdo-Barba I, Colilla M, Manzano M, Vallet-Regí M (2010) In vitro stability of SBA-15 under physiological conditions. Microporous Mesoporous Mater 132:442–452

    Article  Google Scholar 

  34. He Q, Shi J, Zhu M, Chen Y, Chen F (2010) The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater 131:314–320

    Article  Google Scholar 

  35. Gunawidjaja PN, Mathew R, Lo AYH, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2012) Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state NMR. Phil Trans R Soc A 370:1376–1399

    Article  Google Scholar 

  36. Choi Y, Lee JE, Lee JH, Jeong JH, Kim J (2015) A biodegradation study of SBA-15 microparticles in simulated body fluid and in vivo. Langmuir 31:6457–6462

    Article  Google Scholar 

  37. Gouze B, Cambedouzou J, Parrès-Maynadié S, Rébiscoul D (2014) How hexagonal mesoporous silica evolves in water on short and long term: role of pore size and silica wall porosity. Microporous Mesoporous Mater 183:168–176

    Article  Google Scholar 

  38. Izquierdo-Barba I, Ruiz-González L, Doadrio JC, González-Calbet JM, Vallet-Regí M (2005) Tissue regeneration: a new property of mesoporous materials. Solid State Sci 7:983–989

    Article  Google Scholar 

  39. Sakamoto Y, Kim T-W, Ryoo R, Terasaki O (2004) Three-dimensional structure of large-pore mesoporous cubic Ia-3d imaged silica with complementary pores and its carbon replica by electron crystallography. Angew Chem Int Ed 43:5231–5234

    Article  Google Scholar 

  40. Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater 19:4349–4356

    Article  Google Scholar 

  41. Li X, Zhang L, Dong X, Liang J, Shi J (2007) Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater 102:151–158

    Article  Google Scholar 

  42. Yan XX, Deng HX, Huang XH, Lu GQ, Qiao SZ, Zhao DY, Yu CZ (2005) Mesoporous bioactive glasses. I. Synthesis and structural characterization. J Non Cryst Solids 351:3209–3217

    Article  Google Scholar 

  43. Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110:522–530

    Article  Google Scholar 

  44. Diaz A, Lopez T, Manjarrez J, Basaldella E, Martinez-Blanes JM, Odriozola JA (2006) Growth of hydroxyapatite in a biocompatible mesoporous ordered silica. Acta Biomater 2:173–179

    Article  Google Scholar 

  45. Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira Vueva Y, Almeida Miola M, Vitale-Brovarone C, Verné E, Höland E, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10

    Article  Google Scholar 

  46. Turdean-Ionescu C, Stevensson B, Grins J, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2015) Composition-dependent in vitro apatite formation at mesoporous bioactive glass-surfaces quantified by solid-state NMR and powder XRD. RSC Adv 5:86061–86071

    Article  Google Scholar 

  47. Arcos D, Greenspan DC, Vallet-Regí M (2003) A new quantitative method to evaluate the in vitro bioactivity of melt and sol–gel-derived silicate glasses. J Biomed Mater Res A 65:344–351

    Article  Google Scholar 

  48. Gunawidjaja PN, Izquierdo-Barba I, Mathew R, Jansson K, García A, Grins J, Arcos D, Vallet-Regí M, Edén M (2012) J Mater Chem 22:7214–7223

    Article  Google Scholar 

  49. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  Google Scholar 

  50. García A, Colilla M, Izquierdo-Barba I, Vallet-Regí M (2009) Incorporation of phosphorus into mesostructured silicas: a novel approach to reduce the SiO2 leaching in water. Chem Mater 21:4135–4145

    Article  Google Scholar 

  51. Vallet-Regí M, Izquierdo-Barba I, Rámila A, Pérez-Pariente J, Babonneau F, González-Calbet JM (2004) Phosphorous-doped MCM-41 as bioactive material. Solid State Sci 7:233–237

    Article  Google Scholar 

  52. Huang X, Young NP, Townley HE (2014) Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomater Nanotechnol 4:1–15

    Article  Google Scholar 

  53. Braun K, Pochert A, Beck M, Fiedler R, Gruber J, Lindén M (2016) Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol Gel Sci Technol 79(2):319–327

    Article  Google Scholar 

  54. Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K (2012) Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 24(8):1462–1471

    Article  Google Scholar 

  55. Hao N, Liu H, Li L, Chen D, Li L, Tang F (2012) In vitro degradation behavior of silica nanoparticles under physiological conditions. J Nanosci Nanotechnol 12(8):6346–6354

    Article  Google Scholar 

  56. Li X, Zhang L, Dong X, Liang J, Shi J (2007) Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater 102(1–3):151–158

    Article  Google Scholar 

  57. Fontecave T, Sanchez C, Azaïs T, Boissière C (2012) Chemical modification as a versatile tool for tuning stability of silica based mesoporous carriers in biologically relevant conditions. Chem Mater 24(22):4326–4336

    Article  Google Scholar 

  58. Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Nanoscale 8(13):7240–7247

    Article  Google Scholar 

  59. Cauda V, Schlossbauer A, Bein T (2010) Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 132(1–2):60–71

    Article  Google Scholar 

  60. Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20(39):8693

    Article  Google Scholar 

  61. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 9(11):11023–11033

    Article  Google Scholar 

  62. He Q, Zhang Z, Gao F, Li Y, Shi J (2011) In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: effects of Particle Size and PEGylation. Small 7(2):271–280

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank funding from the EU H2020-NMP-PILOTS-2015 programme through the Grant No. 685872 (MOZART) and the European Research Council (Advanced Grant VERDI; ERC-2015-AdG Proposal No. 694160). The authors also thank Spanish MINECO (CSO2010-11384-E and MAT2015-64831-R Grants). JL Paris gratefully acknowledges MINECO, Spain, for his PhD Grant (BES-2013-064182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Vallet-Regí.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, J.L., Colilla, M., Izquierdo-Barba, I. et al. Tuning mesoporous silica dissolution in physiological environments: a review. J Mater Sci 52, 8761–8771 (2017). https://doi.org/10.1007/s10853-017-0787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0787-1

Keywords

Navigation