Skip to main content
Log in

Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid-modified ZnO nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, nanocomposite (NC) films of polycaprolactone (PCL)/ZnO-DA were prepared by casting/solvent evaporation method. For this purpose, ZnO nanoparticles were first modified with diacid (DA) based on bioactive amino acid (N-trimellitylimido-l-alanine), at room temperature using methanol as solvent and ultrasound irradiation method. Then, PCL/ZnO-DA NCs were obtained by addition of various weight percentages (2, 4, and 6 wt%) of ZnO-DA into the PCL matrix, under vigorous stirring and subsequent ultrasonic irradiation. The structural characterization of the NC films was carried out using Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. It was found that relative changes in the peaks and morphology were observed, as the concentration of filler was increased. In addition, embedding the NPs into PCL exhibited a reduction in thermal stability of NCs as compared to the pure PCL. FE-SEM and TEM morphological analysis did not show any aggregation of the NPs in the prepared NCs. It was also found that chemical composition of NC films had influenced their optical absorption and mechanical behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Lim HJ, Lee H, Kim KH, Huh J, Ahn C-H, Kim JW (2013) Effect of molecular architecture on micellization, drug loading and releasing of multi-armed poly (ethylene glycol)-b-poly (ε-caprolactone) star polymers. Colloid Polym Sci 291(8):1817–1827. doi:10.1007/s00396-013-2916-y

    Article  Google Scholar 

  2. Armentano I, Del Gaudio C, Bianco A, Dottori M, Nanni F, Fortunati E, Kenny JM (2009) Processing and properties of poly (ε-caprolactone)/carbon nanofiber composite mats and films obtained by electrospinning and solvent casting. J Mater Sci 44(18):4789–4795. doi:10.1007/s10853-009-3721-3

    Article  Google Scholar 

  3. Takayama T, Todo M (2006) Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J Mater Sci 41(15):4989–4992. doi:10.1007/s10853-006-0137-1

    Article  Google Scholar 

  4. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132. doi:10.1002/(SICI)1521-3927(20000201)21:3<117:AID-MARC117>3.0.CO;2-X

    Article  Google Scholar 

  5. Song H-Y, Min Y-K, Lee B-T (2008) Effect of the addition of t-ZrO2 on the material properties of β-TCP/PCL composites. J Mater Sci 43(13):4450–4454. doi:10.1007/s10853-008-2656-4

    Article  Google Scholar 

  6. Gautam S, Chou C-F, Dinda AK, Potdar PD, Mishra NC (2014) Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J Mater Sci 49(3):1076–1089. doi:10.1007/s10853-013-7785-8

    Article  Google Scholar 

  7. Machado A, Amorim S, Botelho G, Neves IC, Fonseca AM (2013) Nanocomposites of poly (ε-caprolactone) doped with titanium species. J Mater Sci 48(9):3578–3585. doi:10.1007/s10853-013-7154-7

    Article  Google Scholar 

  8. Mofokeng J, Luyt A (2015) Morphology and thermal degradation studies of melt-mixed poly (hydroxybutyrate-co-valerate)(PHBV)/poly (ε-caprolactone)(PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J Mater Sci 50(10):3812–3824. doi:10.1007/s10853-015-8950-z

    Article  Google Scholar 

  9. Ju D, Han L, Li F, Chen S, Dong L (2014) Poly (ɛ-caprolactone) composites reinforced by biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fiber. Int J Biol Macromol 67:343–350. doi:10.1016/j.ijbiomac.2014.03.048

    Article  Google Scholar 

  10. Guan W, Qiu Z (2012) Isothermal crystallization kinetics, morphology, and dynamic mechanical properties of biodegradable poly (ε-caprolactone) and octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 51(7):3203–3208. doi:10.1021/ie202802d

    Article  Google Scholar 

  11. Hua L, Kai W, Liang Z, Inoue Y (2010) Polyester/organo-graphite oxide composite: effect of organically surface modified layered graphite on structure and physical properties of poly (ε-caprolactone). J Polym Sci Part B Polym Phys 48(3):294–301. doi:10.1002/polb.21879

    Article  Google Scholar 

  12. Di Y, Iannace S, Di Maio E, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci Part B Polym Phys 41(7):670–678. doi:10.1002/polb.10420

    Article  Google Scholar 

  13. Thomassin J-M, Lou X, Pagnoulle C, Saib A, Bednarz L, Huynen I, Jérôme R, Detrembleur C (2007) Multiwalled carbon nanotube/poly (ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111(30):11186–11192. doi:10.1021/jp0701690

    Article  Google Scholar 

  14. Chen E-C, Wu T-M (2007) Isothermal crystallization kinetics and thermal behavior of poly (ɛ-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab 92(6):1009–1015. doi:10.1016/j.polymdegradstab.2007.02.019

    Article  Google Scholar 

  15. Saeed K, Park S-Y, Lee H-J, Baek J-B, Huh W-S (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47(23):8019–8025. doi:10.1016/j.polymer.2006.09.012

    Article  Google Scholar 

  16. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly (ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem 33(7):1047–1057. doi:10.1002/pola.1995.080330707

    Article  Google Scholar 

  17. Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone: POSS chemical/physical double networks. Macromolecules 41(13):4730–4738. doi:10.1021/ma800586b

    Article  Google Scholar 

  18. Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jérôme R, Dubois P (2002) Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43(14):4017–4023. doi:10.1016/S0032-3861(02)00229-X

    Article  Google Scholar 

  19. Karagoz B, Galli G, Durmaz H, Hizal G, Tunca U, Bicak N (2010) Novel strategy for tailoring of SiO2 and TiO2 nanoparticle surfaces with poly (ε-caprolactone). Colloid Polym Sci 288(5):535–542. doi:10.1007/s00396-009-2167-0

    Article  Google Scholar 

  20. Zhang J, Qiu Z (2011) Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly (ε-caprolactone)/thermally reduced graphene nanocomposites. Ind Eng Chem Res 50(24):13885–13891. doi:10.1021/ie202132m

    Article  Google Scholar 

  21. Cai Y, Jiang JS, Zheng B, Xie MR (2013) Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly (ε-caprolactone)-polyurethane nanocomposites. J Appl Polym Sci 127(1):49–56. doi:10.1002/app.36849

    Article  Google Scholar 

  22. Goriparthi BK, Suman K, Nalluri MR (2012) Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polym Compos 33(2):237–244. doi:10.1002/pc.22145

    Article  Google Scholar 

  23. Kim K-J, White JL (2009) Effects of regenerated cellulose and natural fiber on interfacial adhesion, rheology and crystallization property in ε-polycaprolactone compounds. Compos Interfaces 16(7–9):619–637. doi:10.1163/092764409X12477406858223

    Article  Google Scholar 

  24. Li W, Qiao X, Sun K, Chen X (2008) Mechanical and viscoelastic properties of novel silk fibroin fiber/poly (ε-caprolactone) biocomposites. J Appl Polym Sci 110(1):134–139. doi:10.1002/app.28514

    Article  Google Scholar 

  25. Esmaili M, Habibi-Yangjeh A (2010) Preparation and characterization of ZnO nanocrystallines in the presence of an ionic liquid using microwave irradiation and photocatalytic activity. J Iran Chem Soc 7(2):S70–S82. doi:10.1007/BF03246186

    Article  Google Scholar 

  26. Rabieh S, Nassimi K, Bagheri M (2016) Synthesis of hierarchical ZnO-reduced graphene oxide nanocomposites with enhanced adsorption-photocatalytic performance. Mater Lett 162:28–31. doi:10.1016/j.matlet.2015.09.111

    Article  Google Scholar 

  27. Mallakpour S, Abdolmaleki A, Rostami M (2014) Morphological and thermal properties of poly (amide-imide)/ZnO nanocomposites derived from 4, 4′-methylenebis (3-chloro-2, 6-diethyl trimellitimidobenzene) and 3, 5-diamino-N-(4-hydroxyphenyl) benzamide. Polym Plast Technol 53(15):1615–1624. doi:10.1080/03602559.2014.919644

    Article  Google Scholar 

  28. Duan L, Zhang W, Yu X, Wang P, Jiang Z, Luan L, Chen Y, Li D (2013) Stable p-type ZnO films dual-doped with silver and nitrogen. Solid State Commun 157:45–48. doi:10.1016/j.ssc.2012.12.029

    Article  Google Scholar 

  29. Behzadnia A, Montazer M, Rad MM (2015) In situ photo sonosynthesis and characterize nonmetal/metal dual doped honeycomb-like ZnO nanocomposites on wool fabric. Ultrason Sonochem 27:200–209. doi:10.1016/j.ultsonch.2015.05.021

    Article  Google Scholar 

  30. Wang J, Tsuzuki T, Tang B, Cizek P, Sun L, Wang X (2010) Synthesis of silica-coated ZnO nanocomposite: the resonance structure of polyvinyl pyrrolidone (PVP) as a coupling agent. Colloid Polym Sci 288(18):1705–1711. doi:10.1007/s00396-010-2313-8

    Article  Google Scholar 

  31. Mallakpour S, Madani M (2012) Transparent and thermally stable improved poly (vinyl alcohol)/cloisite Na+/ZnO hybrid nanocomposite films: fabrication, morphology and surface properties. Prog Org Coat 74(3):520–525. doi:10.1016/j.porgcoat.2012.01.018

    Article  Google Scholar 

  32. Mallakpour S, Nouruzi N (2016) Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer 89:94–101. doi:10.1016/j.polymer.2016.02.038

    Article  Google Scholar 

  33. Ureña YRC, Bettini SHP, Muñoz PR, Wittig L, Rischka K, Lisboa-Filho PN (2015) In situ sonochemical synthesis of ZnO particles embedded in a thermoplastic matrix for biomedical applications. Mater Sci Eng C Mater Biol Appl 49:58–65. doi:10.1016/j.msec.2014.12.022

    Article  Google Scholar 

  34. Safari J, Gandomi-Ravandi S (2014) Application of the ultrasound in the mild synthesis of substituted 2, 3-dihydroquinazolin-4 (1H)-ones catalyzed by heterogeneous metal–MWCNTs nanocomposites. J Mol Struct 1072:173–178. doi:10.1016/j.molstruc.2014.05.002

    Article  Google Scholar 

  35. Tripathy N, Hong T-K, Ha K-T, Jeong H-S, Hahn Y-B (2014) Effect of ZnO nanoparticles aggregation on the toxicity in RAW 264.7 murine macrophage. J Hazard Mater 270:110–117. doi:10.1016/j.jhazmat.2014.01.043

    Article  Google Scholar 

  36. Bhanvase B, Sonawane S (2014) Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: a review. Chem Eng Process 85:86–107. doi:10.1016/j.cep.2014.08.007

    Article  Google Scholar 

  37. Mallakpour S, Behranvand V (2014) Optical, mechanical, and thermal behavior of poly (vinyl alcohol) composite films embedded with biosafe and optically active poly (amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid Polym Sci 292(11):2857–2867. doi:10.1007/s00396-014-3327-4

    Article  Google Scholar 

  38. Mallakpour S, Javadpour M (2015) An efficient preparation and characterization of nanocomposite films based on poly(vinyl chloride) and modified Zno quantum dot with an optically active diacid containing amino acid as coupling agent. Polym Plast Technol. doi:10.1080/03602559.2015.1098681

    Google Scholar 

  39. Molefe FV, Koao LF, Dejene BF, Swart HC (2015) Phase formation of hexagonal wurtzite ZnO through decomposition of Zn(OH)2 at various growth temperatures using CBD method. Opt Mater 46:292–298. doi:10.1016/j.optmat.2015.04.034

    Article  Google Scholar 

  40. De Matos M, Piedade A, Alvarez-Lorenzo C, Concheiro A, Braga M, De Sousa H (2013) Dexamethasone-loaded poly (ɛ-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm 456(2):269–281. doi:10.1016/j.ijpharm.2013.08.042

    Article  Google Scholar 

  41. Cervantes-Uc J, Espinosa JM, Cauich-Rodriguez J, Avila-Ortega A, Vazquez-Torres H, Marcos-Fernandez A, San Román J (2009) TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym Degrad Stab 94(10):1666–1677. doi:10.1016/j.polymdegradstab.2009.06.022

    Article  Google Scholar 

  42. Wang S, Ma D, Huang Y, Yao C, Xie A, Shen Y (2013) Synthesis and characterization of PCL/calcined bone composites. J Chil Chem Soc 58(3):1902–1906. doi:10.4067/S0717-97072013000300024

    Article  Google Scholar 

  43. Mu S, Wu D, Qi S, Wu Z (2011) Preparation of polyimide/zinc oxide nanocomposite films via an ion-exchange technique and their photoluminescence properties. J Nanomater 2011:950832. doi:10.1155/2011/950832

    Article  Google Scholar 

  44. Prakash O, Gautam P, Singh RK (2015) Probing the orientations of coordination complex molecules onto the surface of ZnO nanoparticles by means of surface enhanced Raman scattering, UV–Vis and DFT methods. Appl Surf Sci 349:657–664. doi:10.1016/j.apsusc.2015.04.156

    Article  Google Scholar 

Download references

Acknowledgements

The partial financial support from the Research Affairs Division at Isfahan University of Technology (IUT), Isfahan is gratefully acknowledged. We also acknowledge further financial support from National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC) and Center of Excellency in Sensors and Green Chemistry Research (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Nouruzi, N. Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid-modified ZnO nanoparticles. J Mater Sci 51, 6400–6410 (2016). https://doi.org/10.1007/s10853-016-9936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9936-1

Keywords

Navigation