Skip to main content
Log in

Novel strategy for tailoring of SiO2 and TiO2 nanoparticle surfaces with poly(ε-caprolactone)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel strategy was developed for tailoring of SiO2 and TiO2 nanoparticle surfaces with poly(ε-caprolactone) (PCL). Thus, a self-curable polyester, poly(2-hydroxypropylene maleate) was adsorbed on the nanoparticle surfaces and heated to 180 °C to give a cross-linked polyester layer with residual hydroxyalkyl groups on their surfaces. Surface-initiated polymerization of ε-caprolactone from hydroxyalkyl groups on the surfaces yielded core-shell nanoparticles with cross-linked core and PCL shells (22.2–71.4%). The organic shell layers around the nanoparticle cores were evidenced by transmission electron microscopy, dynamic light scattering, and thermogravimetric analyses techniques. The core-shell nanoparticles were then employed in preparing the stable and the homogenous dispersions with poly(methyl methacrylate-stat-butyl acrylate) solutions. An application of the solutions onto glass substrates yielded uniform and nearly transparent free standing films (40–60 μm) with good homogeneity as inferred from scanning electron microscopy pictures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Herron N (1991) J Phys Chem 95:525

    Article  CAS  Google Scholar 

  2. See KH, Mullins ME, Mill OP, Heiden PA (2005) Nanotechnology 16:1950

    Article  CAS  Google Scholar 

  3. Liu P, Su Z (2006) J Macromol Sci Part B Phys 45:131–138

    Article  CAS  Google Scholar 

  4. Demir MM, Memesa M, Castignolles P, Wegner G (2006) Macromol Rapid Comm 27:763

    Article  CAS  Google Scholar 

  5. Russell TP (2002) Science 297:964

    Article  CAS  Google Scholar 

  6. Huang X, Wirth MJ (1999) Macromolecules 32:1694

    Article  CAS  Google Scholar 

  7. Jordan R, Ulman A, Kang JF, Rafailovich MH, Sokolov J (1999) J Am Chem Soc 121:1016

    Article  CAS  Google Scholar 

  8. Kickelbick G (2003) Prog Polym Sci 28:83

    Article  CAS  Google Scholar 

  9. Wuelfing WP, Gross SM, Miles DT, Murray RW (1998) J Am Chem Soc 120:12696

    Article  CAS  Google Scholar 

  10. Abboud M, Turner M, Duguet E, Fontanille M (1997) J Mater Chem 7:1527

    Article  CAS  Google Scholar 

  11. Prucker O, Ruhe J (1998) Macromolecules 31:602

    Article  CAS  Google Scholar 

  12. Prucker O, Ruhe J (1998) Macromolecules 31:592

    Article  CAS  Google Scholar 

  13. Kim NY, Jeon NL, Choi IS, Takami S, Harada Y, Finnie KR, Girolami GS, Nuzzo RG, Whitesides GM, Laibinis PE (2000) Macromolecules 33:2793

    Article  CAS  Google Scholar 

  14. Jordi MA, Seery TAP (2005) J Am Chem Soc 127:4416

    Article  CAS  Google Scholar 

  15. Böttcher H, Hallensleben ML, Nuß S, Wurm H (2000) Polym Bull 44:223

    Article  Google Scholar 

  16. Xia J, Matyjaszewski K (1997) Macromolecules 30:7697

    Article  CAS  Google Scholar 

  17. Husseman M, Malmstrom EE, McNamara M, Mate M, Mecerreyes D, Benoit DG, Hedrick JL, Mansky P, Huang E, Russell TP, Hawker CJ (1999) Macromolecules 32:1424

    Article  CAS  Google Scholar 

  18. Carrot G, Rutot-Houze D, Pottier A, Degee P, Hilborn J, Dubois P (2002) Macromolecules 35:8400

    Article  CAS  Google Scholar 

  19. Bailly B, Donnenwirth AC, Bartholome C, Beyou E, Bourgeat-Lami E (2006) J Nanomater 1:1

    Article  Google Scholar 

  20. Bicak N, Karagoz B, Tunca U (2003) J Polym Sci Part A-Polym Chem 41:2549

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the bilateral agreement between the Scientific and Technological Research Council of Turkey (TUBITAK) and the CNR Italy (TBAG-U/125, 104T266) for financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyazi Bicak.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

Synthesis of poly(2-hydroxypropylene maleate) PHPM and adsorption of the polyester on the microparticle surfaces and thermal cross-linking are given as an experimental information. Cured and Poly(ε-caprolactone) grafted SiO2 and TiO2 Nanopowders TGA Measurements. XRD Spectra of pure and polyester cured SiO2 and TiO2 nanopowders. (PDF 588 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karagoz, B., Galli, G., Durmaz, H. et al. Novel strategy for tailoring of SiO2 and TiO2 nanoparticle surfaces with poly(ε-caprolactone). Colloid Polym Sci 288, 535–542 (2010). https://doi.org/10.1007/s00396-009-2167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2167-0

Keywords

Navigation