Skip to main content
Log in

Immobilizing enzymes in regular-sized gelatin microspheres through a membrane emulsification method

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Enzyme immobilization is a promising biotechnology which not only ensures reusability of enzymes and permits easy biocatalyst-product separation, but also improves the storage stability of enzymes. It overcomes many drawbacks of free enzyme, and hence presents significant applications in bioscience and bioengineering. Microspheres composed of biopolymer hydrogel are widely used as carriers for enzyme immobilization. In this study, the regular-sized gelatin microspheres were prepared using the membrane emulsification method, and were subsequently utilized for the encapsulation of yeast alcohol dehydrogenase (YADH). The results indicated that the recycling stability, pH tolerance, and storage stability of the immobilized enzyme are all significantly improved. The immobilized YADH maintained higher relative activity than its free form under extreme acidic conditions down to pH 4.0 (63 vs. 16 %) and alkaline conditions up to pH 10.0 (42 vs. 0 %). Additionally, microspheres of different sizes can be prepared using membranes of different pore sizes. The further experiment established a linear correlation between the average diameter of microspheres and the pore size of membranes. The effects of preparation conditions on the diameter and uniformity of microspheres were also investigated systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ai Q, Yang D, Zhu Y, Jiang Z (2013) Fabrication of boehmite/alginate hybrid beads for efficient enzyme immobilization. Ind Eng Chem Res 52:14898–14905

    Article  Google Scholar 

  2. Barzegar A, Moosavi-Movahedi AA, Kyani A, Goliaei B, Ahmadian S, Sheibani N (2010) New model for polymerization of oligomeric alcohol dehydrogenases into nanoaggregates. Appl Biochem Biotechnol 160:1188–1205

    Article  Google Scholar 

  3. Bruschi ML, Cardoso MLC, Lucchesi MB, Gremiao MPD (2003) Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. Int J Pharm 264:45–55

    Article  Google Scholar 

  4. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  Google Scholar 

  5. Chao C, Liu JD, Wang JT, Zhang YW, Zhang B, Zhang YT, Xiang X, Chen RF (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5:10559–10564

    Article  Google Scholar 

  6. Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process: a review. J Chem Technol Biotechnol 79:209–218

    Article  Google Scholar 

  7. Choi YK, Poudel BK, Marasini N, Yang KY, Kim JW, Kim JO, Choi HG, Yong CS (2012) Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique. Int J Pharm 434:264–271

    Article  Google Scholar 

  8. Coradin T, Livage J (2005) Synthesis, characterization and diffusion properties of biomimetic silica-coated gelatine beads. Mater Sci Eng C 25:201–205

    Article  Google Scholar 

  9. Dragosavac MM, Vladisavljevic GT, Holdich RG, Stillwell MT (2012) Production of porous silica microparticles by membrane emulsification. Langmuir 28:134–143

    Article  Google Scholar 

  10. Freitas FF, Marquez LDS, Ribeiro GP, Brandao GC, Cardoso VL, Ribeiro EJ (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae beta-galactosidase. Biochem Eng J 58–59:33–38

    Article  Google Scholar 

  11. Fu H, Dencic I, Tibhe J, Pedraza CAS, Wang Q, Noel T, Meuldijk J, de Croon M, Hessel V, Weizenmann N, Oeser T, Kinkeade T, Hyatt D, Van Roy S, Dejonghe W, Diels L (2012) Threonine aldolase immobilization on different supports for engineering of productive, cost-efficient enzymatic microreactors. Chem Eng J 207:564–576

    Article  Google Scholar 

  12. Gasparini G, Kosvintsev SR, Stillwell MT, Holdich RG (2008) Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification. Colloids Surf B Biointerfaces 61:199–207

    Article  Google Scholar 

  13. Hao DX, Gong FL, Hu GH, Zhao YJ, Lian GP, Ma GH, Su ZG (2008) Controlling factors on droplets uniformity in membrane emulsification: experiment and modeling analysis. Ind Eng Chem Res 47:6418–6425

    Article  Google Scholar 

  14. Ince A, Bayramoglu G, Karagoz B, Altintas B, Bicak N, Arica MY (2012) A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem Eng J 189:404–412

    Article  Google Scholar 

  15. Jiang Y, Jiang Y, Zhang Y, Li J, Zhang L, Jiang Z (2007) Biosilica-coated-carrageenan microspheres for yeast alcohol dehydrogenase encapsulation. J Biomater Sci Polym Ed 18:1517–1526

    Google Scholar 

  16. Jiang Z, Zhang Y, Li J, Jiang W, Yang D, Wu H (2007) Encapsulation of β-glucuronidase in biomimetic alginate capsules for bioconversion of baicalin to baicalein. Ind Eng Chem Res 46:1883–1890

    Article  Google Scholar 

  17. Kou X, Li Q, Lei JD, Geng LY, Deng HQ, Zhang GF, Ma GH, Su ZG, Jiang QY (2012) Preparation of molecularly imprinted nanospheres by premix membrane emulsification technique. J Membr Sci 417:87–95

    Article  Google Scholar 

  18. Kukizaki M (2009) Preparation of solid lipid microcapsules via solid-in-oil-in-water dispersions by premix membrane emulsification. Chem Eng J 151:387–396

    Article  Google Scholar 

  19. Kukizaki M, Goto M (2007) Preparation and evaluation of uniformly sized solid lipid microcapsules using membrane emulsification. Colloids Surf A Physicochem Eng Asp 293:87–94

    Article  Google Scholar 

  20. Kurayama F, Suzuki S, Bahadur NM, Furusawa T, Ota H, Sato M, Suzuki N (2012) Preparation of aminosilane-alginate hybrid microcapsules and their use for enzyme encapsulation. J Mater Chem 22:15405–15411

    Article  Google Scholar 

  21. Lacroix J, Jallot E, Lao J (2014) Gelatin-bioactive glass composites scaffolds with controlled macroporosity. Chem Eng J 256:9–13

    Article  Google Scholar 

  22. Leong W, Lau TT, Wang DA (2013) A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system. Acta Biomater 9:6459–6467

    Article  Google Scholar 

  23. Li J, Jiang Z, Wu H, Long L, Jiang Y, Zhang L (2009) Improving the recycling and storage stability of enzyme by encapsulation in mesoporous CaCO3-alginate composite gel. Compos Sci Technol 69:539–544

    Article  Google Scholar 

  24. Li J, Jiang Z, Wu H, Zhang L, Long L, Jiang Y (2010) Constructing inorganic shell onto LBL microcapsule through biomimetic mineralization: a novel and facile method for fabrication of microbioreactors. Soft Matter 6:542–550

    Article  Google Scholar 

  25. Li L, Ge J, Guo B, Ma PX (2013) In situ forming biodegradable electroactive hydrogels. Polymer Chem 5:2880–2890

    Article  Google Scholar 

  26. Liu R, Ma GH, Wan YH, Su ZG (2005) Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Colloids Surf B Biointerfaces 45:144–153

    Article  Google Scholar 

  27. Lv PP, Wei W, Gong FL, Zhang YL, Zhao HY, Lei JD, Wang LY, Ma GH (2009) Preparation of uniformly sized chitosan nanospheres by a premix membrane emulsification technique. Ind Eng Chem Res 48:8819–8828

    Article  Google Scholar 

  28. Mei L, Xie R, Yang C, Ju XJ, Wang W, Wang JY, Chu LY (2013) pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction. Chem Eng J 232:573–581

    Article  Google Scholar 

  29. Nagayama K, Katakura R, Hata T, Naoe K, Imai M (2008) Reactivity of Candida rugosa lipase in cetyltrimethylanimonium bromide microemulsion-gelatin complex organogels. Biochem Eng J 38:274–276

    Article  Google Scholar 

  30. Nakamura S, Kubo T, Ijima H (2013) Heparin-conjugated gelatin as a growth factor immobilization scaffold. J Biosci Bioeng 115:562–567

    Article  Google Scholar 

  31. Nur Hanani Z, Roos Y, Kerry JP (2012) Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocolloids 29:144–151

    Article  Google Scholar 

  32. Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol–gel matrices. J Am Chem Soc 121:12192–12193

    Article  Google Scholar 

  33. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361

    Article  Google Scholar 

  34. Qi F, Wu J, Fan QZ, He F, Tian GF, Yang TY, Ma GH, Su ZG (2013) Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf B Biointerfaces 112:492–498

    Article  Google Scholar 

  35. Schroder V, Behrend O, Schubert H (1998) Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. J Colloid Interface Sci 202:334–340

    Article  Google Scholar 

  36. Schroder V, Schubert H (1999) Production of emulsions using microporous, ceramic membranes. Colloids Surf A Physicochem Eng Asp 152:103–109

    Article  Google Scholar 

  37. Song XK, Wu H, Shi JF, Wang XL, Zhang WY, Ai QH, Jiang ZY (2014) Facile fabrication of organic-inorganic composite beads by gelatin induced biomimetic mineralization for yeast alcohol dehydrogenase encapsulation. J Mol Catal B Enzym 100:49–58

    Article  Google Scholar 

  38. Sotoyama K, Asano Y, Ihara K, Takahashi K, Doig K (1998) Preparation of W/O food product emulsions by the membrane emulsification method and assessment of stability. Nippon Shokuhin Kagaku Kogaku Kaishi 45:253–260

    Article  Google Scholar 

  39. Supsakulchai A, Ma GH, Nagai M, Omi S (2003) Preparation of uniform titanium dioxide (TiO2) polystyrene-based composite particles using the glass membrane emulsification process with a subsequent suspension polymerization. J Microencapsul 20:1–18

    Google Scholar 

  40. Tanriseven A, Olcer Z (2008) A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin. Biochem Eng J 39:430–434

    Article  Google Scholar 

  41. Tong X, El-Zahab B, Zhao X, Liu Y, Wang P (2011) Enzymatic synthesis of L©\lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol Bioeng 108:465–469

    Article  Google Scholar 

  42. Vanni A, Anfossi L, Pessione E, Giovannoli C (2002) Catalytic and spectroscopic characterisation of a copper-substituted alcohol dehydrogenase from yeast. Int J Biol Macromol 30:41–45

    Article  Google Scholar 

  43. Wang HA, Boerman OC, Sariibrahimoglu K, Li YB, Jansen JA, Leeuwenburgh SCG (2012) Comparison of micro- versus nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: bone morphogenetic protein-2 and alkaline phosphatase. Biomaterials 33:8695–8703

    Article  Google Scholar 

  44. Wang X, Jiang Z, Shi J, Liang Y, Zhang C, Wu H (2012) Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization. ACS Appl Mater Interfaces 4:3476–3483

    Article  Google Scholar 

  45. Wang X, Jiang Z, Shi J, Zhang C, Zhang W, Wu H (2013) Dopamine-modified alginate beads reinforced by cross-linking via titanium coordination or self-polymerization and its application in enzyme immobilization. Ind Eng Chem Res 52:14828–14836

    Article  Google Scholar 

  46. Wang XL, Li Z, Shi JF, Wu H, Jiang ZY, Zhang WY, Song XK, Ai QH (2014) Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. Acs Catalysis 4:962–972

    Article  Google Scholar 

  47. Wei Q, Wei W, Lai B, Wang LY, Wang YX, Su ZG, Ma GH (2008) Uniform-sized PLA nanoparticles: preparation by premix membrane emulsification. Int J Pharm 359:294–297

    Article  Google Scholar 

  48. Wei W, Wang LY, Yuan L, Yang XD, Su ZG, Ma GH (2008) Bioprocess of uniform-sized crosslinked chitosan microspheres in rats following oral administration. Eur J Pharm Biopharm 69:878–886

    Article  Google Scholar 

  49. S-w Xu, Jiang Z-y LuY, Wu H, Yuan W-K (2005) Preparation and catalytic properties of novel alginate-silica-dehydrogenase hybrid biocomposite beads. Ind Eng Chem Res 45:511–517

    Google Scholar 

  50. Yang JA, Hao DX, Bi CX, Su ZG, Wang LY, Ma GH (2010) Rapid synthesis of uniform magnetic microspheres by combing premix membrane emulsification and in situ formation techniques. Ind Eng Chem Res 49:6047–6053

    Article  Google Scholar 

  51. Zhang Y, Wu H, Li L, Li J, Jiang Z, Jiang Y, Chen Y (2009) Enzymatic conversion of Baicalin into Baicalein by [beta]-glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. J Mol Catal B Enzym 57:130–135

    Article  Google Scholar 

  52. Zhao X, Wu J, Gong FL, Cui JM, Janson JC, Ma GH, Su ZG (2014) Preparation of uniform and large sized agarose microspheres by an improved membrane emulsification technique. Powder Technol 253:444–452

    Article  Google Scholar 

  53. Zhou QZ, Liu XY, Liu SJ, Ma GH, Su ZG (2008) Preparation of uniformly sized agarose microcapsules by membrane emulsification for application in sorting bacteria. Ind Eng Chem Res 47:6386–6390

    Article  Google Scholar 

  54. Zhou QZ, Wang LY, Ma GH, Su ZG (2007) Preparation of uniform-sized agarose beads by microporous membrane emulsification technique. J Colloid Interface Sci 311:118–127

    Article  Google Scholar 

  55. Zhou QZ, Wang LY, Ma GH, Su ZG (2008) Multi-stage premix membrane emulsification for preparation of agarose microbeads with uniform size. J Membr Sci 322:98–104

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (21306139, 21276060), Natural Science Foundation of Tianjin (No. 14JCYBJC20800), the Project (2015LG07) from Tianjin University of Science &Technology and National Undergraduate Training Programs for Innovation and Entrepreneurship (201510057135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Li or Tao Jiang.

Additional information

Jian Li and Jun Ma have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ma, J., Jiang, Y. et al. Immobilizing enzymes in regular-sized gelatin microspheres through a membrane emulsification method. J Mater Sci 51, 6357–6369 (2016). https://doi.org/10.1007/s10853-016-9932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9932-5

Keywords

Navigation