Skip to main content
Log in

Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A shear-induced orientation extrusion technology was proposed to prepare high orientated functional graphene oxide sheets (FGs)/isotactic polypropylene (iPP) nanocomposites. Scanning electrical microscope and two-dimensional wide-angle X-ray diffraction techniques showed that FGs in iPP matrix were fully exfoliated, uniformly dispersed, and highly oriented along the flow direction. The crystallization behavior, the mechanical properties, the thermal stability, and the gas barrier properties of the composites with orientated FGs were evaluated by a differential scanning calorimetry, a tensile machine, a thermogravimetric analysis, and a gas permeability test, respectively. The results showed that the tensile strength, yield stress, Young’s modulus, thermal stability, and barrier property of the iPP/FGs composites were improved on a whole by increasing the high orientation, uniform dispersion, and full exfoliation of FGs in the iPP matrix and the oriented crystallites of iPP as well as the high crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  3. Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6):065709

    Article  Google Scholar 

  4. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  Google Scholar 

  5. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nancomposites. Macromolecules 43(16):6515–6530

    Article  Google Scholar 

  6. Ma W-S, Wu L, Yang F, Wang S-F (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49(2):562–571. doi:10.1007/s10853-013-7736-4

    Article  Google Scholar 

  7. Mukhopadhyay P, Gupta RK (2011) Trends and frontiers in graphene-based polymer nanocomposites. Plast Eng 67(1):32–42

    Google Scholar 

  8. Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3):1082–1093. doi:10.1007/s10853-014-8665-6

    Article  Google Scholar 

  9. Cai D, Song M (2010) Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem 20(37):7906–7915

    Article  Google Scholar 

  10. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  11. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21(10):3301–3310

    Article  Google Scholar 

  12. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115

    Article  Google Scholar 

  13. Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50(7):2797–2805. doi:10.1007/s10853-015-8837-z

    Article  Google Scholar 

  14. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  Google Scholar 

  15. Yuan B, Sheng H, Mu X, Song L, Tai Q, Shi Y, Liew KM, Hu Y (2015) Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J Mater Sci 50(16):5389–5401. doi:10.1007/s10853-015-9083-0

    Article  Google Scholar 

  16. Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21(10):3455–3461

    Article  Google Scholar 

  17. Qiu F, Hao Y, Li X, Wang B, Wang M (2015) Functionalized graphene sheets filled isotactic polypropylene nanocomposites. Compos B Eng 71:175–183

    Article  Google Scholar 

  18. Huang H-D, Ren P-G, Chen J, Zhang W-Q, Ji X, Li Z-M (2012) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membr Sci 409–410:156–163

    Article  Google Scholar 

  19. Kim HM, Lee JK, Lee HS (2011) Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films 519(22):7766–7771

    Article  Google Scholar 

  20. Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6:205–209

    Article  Google Scholar 

  21. Huang L, Li C, Shi G (2014) High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J Mater Chem A 2:968–974

    Article  Google Scholar 

  22. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater 27:2100–2106

    Article  Google Scholar 

  23. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972

    Article  Google Scholar 

  24. Shen J, Li J, Guo S (2012) The distribution and morphological evolution of dispersed phase in laminating-multiplying elements during extrusion. Polym Compos 33(5):693–699

    Article  Google Scholar 

  25. Sun X, Yu Q, Shen J, Gao S, Li J, Guo S (2013) In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion. J Mater Sci 48(3):1214–1224. doi:10.1007/s10853-012-6862-8

    Article  Google Scholar 

  26. Zhang Q, Wang Y, Fu Q (2003) Shear-induced change of exfoliation and orientation in polypropylene/montmorillonite nanocomposites. J Polym Sci B 41(1):1–10

    Article  Google Scholar 

  27. Na B, Zhang Q, Fu Q, Zhang G, Shen K (2002) Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends. Polymer 43(26):7367–7376

    Article  Google Scholar 

  28. Li ZM, Li LB, Shen KZ, Yang W, Huang R, Yang MB (2004) Transcrystalline morphology of an in situ microfibrillar poly (ethylene terephthalate)/poly (propylene) blend fabricated through a slit extrusion hot stretching-quenching process. Macromol Rapid Commun 25(4):553–558

    Article  Google Scholar 

  29. An H, Zhao B, Ma Z, Shao C, Wang X, Fang Y et al (2007) Shear-induced conformational ordering in the melt of isotactic polypropylene. Macromolecules 40(14):4740–4743

    Article  Google Scholar 

  30. Huang HX (2001) Flow fields of polymer melt flowing through wedge converging channel. J Reinf Plast Compos 20:356–364

    Article  Google Scholar 

  31. Shen JB, Wang M, Li J, Guo SY (2011) In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the laminating-multiplying die. Polym Adv Technol 22(2):237–245

    Article  Google Scholar 

  32. Tabatabaei SH, Carreau PJ, Ajji A (2009) Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation. Polymer 50:4228–4240

    Article  Google Scholar 

  33. Huo H, Jiang S, An L, Feng J (2004) Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 37(7):2478–2483

    Article  Google Scholar 

  34. Lei F, Du Q, Li T, Li J, Guo S (2013) Effect of phase morphology and interfacial strength on barrier properties of high density polyethylene/polyamide 6 membranes. Polym Eng Sci 1996–2003

  35. Ma Z, Fernandez-Ballester L, Cavallo D, Gough T, Peters GWM (2013) High-stress shear-induced crystallization in isotactic polypropylene and propylene/ethylene random copolymers. Macromolecules 46:2671–2680

    Article  Google Scholar 

  36. Hsiao BS, Yang L, Somani RH, Avila-Orta CA, Zhu L (2005) Unexpected shish-kebab structure in a sheared polyethylene melt. Phys Rev Lett 94:117802

    Article  Google Scholar 

  37. Zhang L, Shi W, Cheng H, Han CC (2014) Reexamination of shish kebab formation in poly(ethylene oxide) melts. Polymer 55(12):2890–2899

    Article  Google Scholar 

  38. Cui K, Liu D, Ji Y, Huang N, Ma Z, Wang Z, Lv F, Yang H, Li L (2015) Nonequilibrium nature of flow-induced nucleation in isotactic polypropylene. Macromolecules 48(3):694–699

    Article  Google Scholar 

  39. Chen Y, Fang D, Hsiao BS, Li Z (2015) Insight into unique deformation behavior of oriented isotactic polypropylene with branched shish-kebabs. Polymer 60(9):274–283

    Article  Google Scholar 

  40. Zhang Z-C, Deng L, Lei J, Li Z-M (2015) Isotactic polypropylene reinforced atactic polypropylene by formation of shish-kebab superstructure. Polymer 78:120–133

    Article  Google Scholar 

  41. Xu J-Z, Chen C, Wang Y, Tang H, Li Z-M, Hsiao BS (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44(8):808–2818

    Google Scholar 

  42. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420

    Article  Google Scholar 

  43. Zhang X, Shen L, Wu H, Guo SY (2013) Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol 89:24–28

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (51103119), the Natural Science Foundation Project of CQ (CSTC2014JCYJA50024), and the Fundamental Research Funds for the Central Universities (XDJK2014B033) for financial support of this work and the Professor Guo’s group in the State Key Laboratory of Polymer Materials Engineering for providing the gas permeability test in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Qiu, F., Hao, YB. et al. Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. J Mater Sci 51, 5185–5195 (2016). https://doi.org/10.1007/s10853-016-9820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9820-z

Keywords

Navigation