Skip to main content
Log in

In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isotactic polypropylene/polyamide/carbon black (PP/PA/CB) composites with microfibrillar morphology were designed and prepared using a multistage stretching extruder with an assembly of laminating-multiplying elements (LMEs). CB was selectively located in PA. With the increase of LME number from zero to seven, the conductive PA/CB phase was found to experience an elongating-breaking-elongating process. This morphological development resulted in the strong dependence of electrical resistivity on the LME number. When no LME was used, PP/PA/CB materials with 2.0, 3.0, or 4.0 wt% (1.0, 1.6, and 2.1 vol%) CB employed were insulators (resistivity: 1010 Ω cm) due to their droplet morphology. With the introduction of LMEs, a conductive network was formed because of the microfibrillation of the conductive PA/CB phase; these materials became conductors (resistivity: 104–106 Ω cm). The percolation threshold can lower to 1.5 wt% (0.9 vol%). The low resisticity and percolation threshold cannot be obtained through the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Feng JY, Chan CM (2010) Polymer 41(12):4559

    Article  Google Scholar 

  2. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) J Mater Sci 42(10):3408

    Article  CAS  Google Scholar 

  3. Cao Q, Song YH, Liu ZH, Zheng Q (2009) J Mater Sci 44:4241

    Article  CAS  Google Scholar 

  4. Bao YB, Wang JB, Xue PF, Li QY, Guo WH, Wu CF (2012) J Mater Sci 47:1289

    Article  CAS  Google Scholar 

  5. Levon K, Margolina A, Patashinsky AZ (1993) Macromolecules 26(15):4061

    Article  CAS  Google Scholar 

  6. Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Chem Mater 10(5):1227

    Article  CAS  Google Scholar 

  7. Zhang MQ, Yu G, Zeng HM, Zhang HB, Hou YH (1998) Macromolecules 31(19):6724

    Article  CAS  Google Scholar 

  8. Calberg C, Blacher S, Gubbels F, Brouers F, Deltour R, Jérôme R (1999) J Phys D Appl Phys 32(13):1517

    Article  CAS  Google Scholar 

  9. Li YJ, Shimizu H (2008) Macromolecules 41(14):5339

    Article  CAS  Google Scholar 

  10. Hu JW, Li MW, Zhang MQ, Xiao DS, Cheng GS, Rong MZ (2003) Macromol Rapid Commun 24(15):889

    Article  CAS  Google Scholar 

  11. Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F et al (1995) Macromolecules 28(5):1559

    Article  CAS  Google Scholar 

  12. Bose S, Ozdilek C, Leys J, Seo JW, Wubbenhorst MW, Vermant J, Moldenaers P (2010) ACS Applied Materials & Interfaces 2(3):800

    Article  CAS  Google Scholar 

  13. Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A (1994) Macromolecules 27(7):1972

    Article  CAS  Google Scholar 

  14. Cui LM, Zhang Y, Zhang YX, Zhang XF, Zhou W (2007) Eur Polymer J 43(12):5097

    Article  CAS  Google Scholar 

  15. Zhang JH, Ravati S, Virgilio N, Favis BD (2007) Macromolecules 40(25):8817

    Article  CAS  Google Scholar 

  16. Kotaki M, Wang K, Toh ML, Chen L, Wong SY, He CB (2006) Macromolecules 39(3):908

    Article  CAS  Google Scholar 

  17. Wen SH, Chung DDL (2006) Carbon 44(11):2130

    Article  CAS  Google Scholar 

  18. Zhang C, Wang L (2008) Carbon 46(15):2053

    Article  CAS  Google Scholar 

  19. Mohammed H, Saleh A, Sundararaj U (2009) Carbon 47(1):2

    Article  Google Scholar 

  20. Ai-Saleh MH, Sundararaj U (2010) Polymer 51(12):2740

    Article  Google Scholar 

  21. Costa P, Silva J, Sencadas V, Costa CM, van Hattum FWJ, Rocha JG, Lanceros-Mendez S (2009) Carbon 47(11):2590

    Article  CAS  Google Scholar 

  22. Dai K, Xu XB, Li ZM (2007) Polymer 48(3):849

    Article  CAS  Google Scholar 

  23. Xu XB, Li ZM, Yang MB, Jiang S, Huang R (2005) Carbon 43(7):1479

    Article  CAS  Google Scholar 

  24. Zhang YC, Pang H, Dai K, Huang YF, Ren PG, Chen C, Li ZM (2012) J Mater Sci 47:3713

    Article  CAS  Google Scholar 

  25. Wu GZ, Asai S, Sumita M (1999) Macromolecules 32(10):3534

    Article  CAS  Google Scholar 

  26. Xu DH, Wang ZG (2008) Macromolecules 41(3):815

    Article  CAS  Google Scholar 

  27. McCullen SD, Stevens DR, Roberts WA, Ojha S, Clarke LI, Gorga RE (2007) Macromolecules 40(4):997

    Article  CAS  Google Scholar 

  28. White SI, DiDonna BA, Mu MF, Lubensky TC, Winey KI (2009) Physical Review B 79:0244301

    Google Scholar 

  29. Schrenk WJ. Method for multilayer coextrusion. US Patent 3,773,882

  30. Zhang JB, Ji SX, Song J, Lodge TP, Macosko CW (2010) Macromolecules 43:7617

    Article  CAS  Google Scholar 

  31. Wang HP, Keum JK, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A (2009) Science 323:757

    Article  CAS  Google Scholar 

  32. Shen JB, Wang M, Li J, Guo SY (2011) Polym Adv Technol 22(2):237

    Article  CAS  Google Scholar 

  33. Stauffer D, Aharony A (1985) Introduction to percolation theory. Taylor & Francis, Washington

    Book  Google Scholar 

  34. Kyung HY, Kwon W, Nagata KJ, Takahashi K (2004) Carbon 42(8–9):1877

    Google Scholar 

  35. Sumit M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25(2):265

    Article  Google Scholar 

  36. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  37. Feng JY, Chan CM, Li JX (2003) Polym Eng Sci 43(5):1058

    Article  CAS  Google Scholar 

  38. Garmabi H, Naficy S (2007) J Appl Polym Sci 106(5):3461

    Article  CAS  Google Scholar 

  39. Omonov TS, Harrats C, Groeninckx G (2005) Polymer 46(26):12322

    Article  CAS  Google Scholar 

  40. Yui H, Wu G, Sano H, Sumita M, Kino K (2006) Polymer 47:3599

    Article  CAS  Google Scholar 

  41. Al-Saleh MH, Sundararaj U (2008) Compos Part A-Appl S 39:284

    Article  Google Scholar 

  42. Li Y, Wang S, Zhang Y, Zhang Y (2006) J Appl Polym Sci 99:461

    Article  CAS  Google Scholar 

  43. Motta M, Li YL, Kinloch I, Windle A (2005) Nano Lett 5(8):1529

    Article  CAS  Google Scholar 

  44. Malchev PG, David CT, Picken SJ, Gotsis AD (2004) Polymer 46(11):3895

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Special Funds for Major State Basic Research Projects of China (2005CB623800) and the Natural Science Foundation of China (50603016, 50773047, 50933004, and 51073099) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Li or Shaoyun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Yu, Q., Shen, J. et al. In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion. J Mater Sci 48, 1214–1224 (2013). https://doi.org/10.1007/s10853-012-6862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6862-8

Keywords

Navigation