Skip to main content
Log in

Fabrication and photoluminescence of Eu-doped KNN-based transparent ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transparent lead-free luminescent ceramics K0.47Na0.47Li0.06Nb0.94Bi0.06O3–Eu x (KNNLB:Eu) have been fabricated via hot-press sintering technology. The formation of perovskite KNNLB:Eu ceramics with highly densified microstructure was verified through X-ray diffraction and scanning electron microscopy studies. The transmittance spectra, photoluminescence excitation and emission spectra, dependence of the photoluminescence intensity on Eu3+ doping content as well as the luminescence decay curves were investigated. The KNNLB:Eu ceramics present high transmittance both in the near-infrared and the middle-infrared regions, and can be efficiently excited by near-ultraviolet and blue light to realize strong reddish luminescence. The red emission at around 613 nm is particularly intense, which is attributed to the electric dipole transition 5D07F2 of Eu3+. The PL properties are also discussed. The emission peak splitting of 5D07F2 transition is observed as a response to the change in crystal environment around Eu3+ in the KNNLB:Eu ceramics. With the novel intrinsic ferroelectric properties of KNN, the KNNLB:Eu ceramics could be promising candidates for multifunctional optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Noguchi Y, Miyayama M, Kudo T (2000) Ferroelectric properties of intergrowth Bi4Ti3O12–SrBi4Ti4O15 ceramics. Appl Phys Lett 77:3639–3641

    Article  Google Scholar 

  2. Koichi M, Miyamoto K, Ujita S, Saito T, Ito H, Omatsu T (2011) Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser. Opt Expr 19:18523–18528

    Article  Google Scholar 

  3. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  4. Wen HL, Duan CK, Jia GH, Tanner PA, Brik MG (2011) Glass composition and excitation wavelength dependence of the luminescence of Eu3+ doped lead borate glass. J Appl Phys 110:033536–033544

    Article  Google Scholar 

  5. Futami Y, Yanagida T, Fujimoto Y, Pejchal J, Sugiyama M, Kurosawa S, Yokota Y, Ito A, Yoshikawa A, Goto T (2013) Optical and scintillation properties of Sc2O3, Y2O3 and Lu2O3 transparent ceramics synthesized by SPS method. Radiat Meas 55:136–140

    Article  Google Scholar 

  6. Ikesue A, Aung YL (2008) Ceramic laser materials. Nat Photonics 2:721–727

    Article  Google Scholar 

  7. Krsmanović RM, Antić Ž, Bártová B, Brik MG, Dramićanin MD (2012) Fabrication of polycrystalline (Y0.7Gd0.3)2O3:Eu3+ ceramics: The influence of initial pressure and sintering temperature on its morphology and photoluminescence activity. Ceram Int 38:1303–1313

    Article  Google Scholar 

  8. Haertling GH (1987) PLZT electro-optic materials and applications—a review. Ferroelectrics 75:25–55

    Article  Google Scholar 

  9. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  Google Scholar 

  10. Li KK (2002) US patent application 10/139857, USA

  11. Fujii I, Yoshida R, Imai T, Yamazoe S, Wada T (2013) Fabrication of transparent Pb(Mg1/3Nb2/3)O3–PbTiO3 based ceramics by conventional sintering. J Am Ceram Soc 96:3782–3787

    Article  Google Scholar 

  12. Zhang S, Xia R, Lebrun L, Anderson D, Shrout TR (2005) Piezoelectric materials for high power, high temperature applications. Mater Lett 59:3471–3475

    Article  Google Scholar 

  13. Zhao KY, Ruan W, Zeng HR, Zeng JT, Li GR, Yin QR (2014) Domain dynamics of La-doped PMN-PT transparent ceramics studied by piezo response force microscope. Appl Surf Sci 293:366–370

    Article  Google Scholar 

  14. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700

    Article  Google Scholar 

  15. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:111–124

    Article  Google Scholar 

  16. Jaeger RE, Egerton L (1962) Hot pressing of potassium–sodium niobates. J Am Ceram Soc 45:209–213

    Article  Google Scholar 

  17. Li F, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89:706–709

    Article  Google Scholar 

  18. Lim JB, Jeong YH, Kim MH, Suvorov D, Jeon JH (2012) Effect of K/Na ratio on piezoelectric properties of modified (K1−x Na x )NbO3 “Hard’’ lead-free piezoelectrics. Ceram Int 38:2605–2608

    Article  Google Scholar 

  19. Hollenstein E, Damjanovic D, Setter N (2007) Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J Eur Ceram Soc 27:4093–4097

    Article  Google Scholar 

  20. Li K, Li FL, Wang Y, Kwok KW, Chan HLW (2011) Hot-pressed K0.48Na0.52Nb1−x Bi x O3 (x = 0.05–0.15) lead-free ceramics for electro-optic applications. Mater Chem Phys 131:320–324

    Article  Google Scholar 

  21. Li FL, Kwok KW (2013) Fabrication of transparent electro-optic (K0.5Na0.5)1−x Li x Nb1−x Bi x O3 lead-free ceramics. J Eur Ceram Soc 33:123–130

    Article  Google Scholar 

  22. Wang BK, Tian XX, Xu Z, Qu SB, Li ZR (2012) Preparation and performances of KNN-based lead-free transparent ceramics. Acta Phys Sin 61:197703-1–197703-5

    Google Scholar 

  23. Wu X, Kwok KW, Li FL (2013) Upconversion fluorescence studies of sol–gel-derived Er-doped KNN ceramics. J Alloys Compd 580:88–92

    Article  Google Scholar 

  24. Geng ZM, Li K, Shi DL (2014) Preparation and performance of KNN-based upconversion transparent ceramics. J Inorg Mater 29:1265–1269

    Article  Google Scholar 

  25. Sun HQ, Zhang QW, Wang XS, Gu M (2015) A new red-emitting material K0.5Na0.5NbO3:Eu3+ for white LEDs. Mater Res Bull 64:134–138

    Article  Google Scholar 

  26. Jia YM, Wei YB, Wu Z, Zhou ZH (2014) Effects of compositional changes on luminescence of lead-free Eu3+-doped K1−x Na x NbO3 piezoelectric ceramics. J Alloys Compd 586:66–68

    Article  Google Scholar 

  27. Geng ZM, Li K, Shi DL, Zhang L, Shi XY (2015) Effect of Sr and Ba-doping in optical and electrical properties of KNN based transparent ceramics. J Mater Sci 26:6769–6775. doi:10.1007/s10854-015-3287-6

    Google Scholar 

  28. Sun HQ, Zhang QW, Wang XS, Gu M (2014) Green and red upconversion luminescence of Er3+-doped K0.5Na0.5NbO3 ceramics. Ceram Int 40:2581–2584

    Article  Google Scholar 

  29. Wang J, Luo LH, Huang YP, Li WP, Wang FF (2015) Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3xLiNbO3 ceramics. Appl Phys Lett 107:192901-1–192901-5

    Google Scholar 

  30. Wang J, Luo LH, Huang YP, Li WP (2016) Effect of Yb codoping on the phase transition, and electrical and photoluminescence properties in KNLN:Er/xYb ceramics. J Am Ceram Soc 99:1625–1630

    Article  Google Scholar 

  31. Fujimoto Y (2010) Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass. J Am Ceram Soc 93:581–589

    Article  Google Scholar 

  32. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  33. Li FL, Kwok KW (2013) K0.5Na0.5NbO3-based lead-free transparent electro-optic ceramics prepared by pressureless sintering. J Am Ceram Soc 96:3557–3562

    Article  Google Scholar 

  34. Dai YJ, Zhang XW, Zhou GY (2007) Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl Phys Lett 90:262903-1–262903-3

    Google Scholar 

  35. Lin D, Kwok KW (2012) Phase transition, dielectric and piezoelectric properties of K0.5Na0.5NbO3–CaTi0.9Zr0.1O3 lead-free ceramics. J Mater Sci 47:397–402. doi:10.1007/s10853-011-5811-2

    Article  Google Scholar 

  36. Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42:438–442

    Article  Google Scholar 

  37. Gao D, Kwok KW, Lin D, Chan HLW (2009) Microstructure and electrical properties of La-modified K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J Phys D 42:035411-1–035411-6

    Google Scholar 

  38. Lin D, Kwok KW, Chan HLW (2007) Structure, dielectric, and piezoelectric properties of CuO doped K0.5Na0.5NbO3–BaTiO3 lead-free ceramics. J Appl Phys 102:074113-1–074113-6

    Google Scholar 

  39. Lin D, Kwok KW, Chan HLW (2009) Dielectric and piezoelectric properties of K0.5Na0.5NbO3–AgSbO3 lead-free ceramics. J Appl Phys 106:034102-1–034102-5

    Google Scholar 

  40. Shi DL, Li K, Li FL, Wang Y (2012) Transparent sodium potassium niobate ceramics sintered in atmosphere. J Funct Mater 3:290–293

    Google Scholar 

  41. Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and lasers. Springer, Berlin

    Book  Google Scholar 

  42. Inokuti M, Hirayama F (1965) Influence of energy transfer by the exchange mechanism on donor luminescence. J Chem Phys 43:1978–1989

    Article  Google Scholar 

  43. Pradhan AK, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts GB, Roy UN, Cui Y, Burger A, Wilkerson AL (2005) Luminescence and spectroscopic behavior of Eu3+-doped Y2O3 and Lu2O3 epitaxial films grown by pulsed-laser deposition. J Appl Phys 97:023513-1–023513-6

    Google Scholar 

  44. Ishigaki T, Yoshimura M, Matsushita N, Uematsu K, Toda K, Sato M (2010) Melt synthesis of Eu-doped oxide phosphors using arc-imaging furnace. J Eur Ceram Soc 30:165–169

    Article  Google Scholar 

  45. Méndez-Ramos J, Lavín V, Martín IR, Rodríguez-Mendoza UR, Rodríguez VD, Lozano-Gorrín AD, Núñez P (2001) Role of the Eu3+ ions in the formation of transparent oxyfluoride glass ceramics. J Appl Phys 89:5307–5310

    Article  Google Scholar 

  46. Méndez-Ramos J, Lavín V, Martín IR, Rodríguez-Mendoza UR, Rodríguez VD (2003) Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics. J Appl Phys 94:2295–2301

    Article  Google Scholar 

  47. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761

    Article  Google Scholar 

  48. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520

    Article  Google Scholar 

  49. Qiao XB, Cheng Y, Qin L, Qin CX, Cai PQ, Kim S, Seo HJ (2014) Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate. J Alloys Compd 617:946–951

    Article  Google Scholar 

  50. Zhou J, Ma Q, Wang PF, Cheng LJ, Liu SJ (2014) Influence of rare-earth Nd, Dy, and Ho doping on structural and electrical properties of (Na0.53K0.47)0.942Li0.058NbO3 based lead-free piezoceramics. Ceram Int 40:2451–2459

    Article  Google Scholar 

  51. Sivakumar V, Varadaraju UV (2007) An orange-red phosphor under near-UV excitation for white light emitting diodes. J Electrochem Soc 154:J28–J31

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the School of Materials Science and Engineering of Changzhou University and partly supported by the Department of Applied Physics and Materials Research Centre of The Hong Kong Polytechnic University. We especially thank professor Haitao Huang for technical advice and article-writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Li, K., Li, X. et al. Fabrication and photoluminescence of Eu-doped KNN-based transparent ceramics. J Mater Sci 52, 2285–2295 (2017). https://doi.org/10.1007/s10853-016-0521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0521-4

Keywords

Navigation