Skip to main content
Log in

Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conjugated polymers have been extensively applied as active materials in nanostructured platforms for optical and electrical devices. The incorporation of metal nanoparticles (NPs) into the polymer-based platform arises as a strategy to develop novel hybrid functional nanocomposites with enhanced electrical and optical properties. However, efficient and simple processing routes to produce such nanocomposites are still on demand. In this work, we present an effective route to obtain functional nanocomposites based on electrospun nanofibers coated with gold nanoparticles, displaying interesting optical and electrical properties. Polymethyl methacrylate (PMMA) electrospun nanofibers doped with poly(3-hexyl thiophene-2,5-diyl) (P3HT) were obtained by the electrospinning technique, and displayed a strong red emission centered at 650 nm assigned to P3HT. Such nanofibers were deposited on to fluorine-doped tin oxide electrodes and with modified with gold nanoparticles (AuNPs) in order to produce hybrid composite materials. The performance of electrodes modified with PMMA/P3HT-AuNPs composite material was evaluated by impedance spectroscopy and revealed an enhancement of electron transfer kinetics, which indicates it as a potential platform for optical and electrochemical (bio)sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nakane K, Morinaga M, Ogata N (2013) Formation of niobium oxide and carbide nanofibers from poly(vinyl alcohol)/niobium oxide composite nanofibers. J Mater Sci 48:7774–7779. doi:10.1007/s10853-013-7614-0

    Article  Google Scholar 

  2. Saleem M, Yu H, Wang L et al (2015) Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Anal Chim Acta 876:9–25. doi:10.1016/j.aca.2015.01.012

    Article  Google Scholar 

  3. Zellmeier M, Rappich J, Klaus M et al (2015) Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells. Appl Phys Lett 107:1–4. doi:10.1063/1.4935751

    Article  Google Scholar 

  4. Kim S, Lee H, Mun J, Lee S (2016) Marginal solvents preferentially improve the molecular order of thin polythiophene fi lms. RSC Adv 6:23640–23644. doi:10.1039/C6RA00504G

    Article  Google Scholar 

  5. Massoumi B, Jaymand M (2016) Nanostructured star-shaped polythiophene with tannic acid core: synthesis, characterization, and its physicochemical properties. J Appl Polym Sci 43513:1–11. doi:10.1002/app.43513

    Google Scholar 

  6. Mehmood U, Al-ahmed A, Hussein IA (2016) Review on recent advances in polythiophene based photovoltaic devices. Renew Sustain Energy Rev 57:550–561. doi:10.1016/j.rser.2015.12.177

    Article  Google Scholar 

  7. Sehgal P, Narula A (2015) Quantum dot sensitized solar cell based on poly (3-hexyl thiophene)/CdSe nanocomposites. Opt Mater (Amst) 48:44–50. doi:10.1016/j.optmat.2015.07.027

    Article  Google Scholar 

  8. Oliveira EF, Lavarda FC (2016) Copolymers with similar comonomers: tuning frontier orbital energies for application in organic solar cells. Polym eng Sci 56:479–487. doi:10.1002/pen.24275

    Article  Google Scholar 

  9. Huynh TP, Sharma PS, Sosnowska M et al (2015) Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Prog Polym Sci 47:1–25. doi:10.1016/j.progpolymsci.2015.04.009

    Article  Google Scholar 

  10. Madani A, Maouche N, Riahi F, Chehimi MM (2015) One-step generated poly(3-methylthiophene)/CdSe nanocomposite thin films: redox, impedance and enhanced photoelectrochemical properties. Ionics (Kiel) 21:2031–2037. doi:10.1007/s11581-015-1382-6

    Article  Google Scholar 

  11. Zhang Y, Li P, Xu X et al (2015) SnO2 films: in-situ template-sacri ficial growth and photovoltaic property based on SnO2/poly (3-hexyl-thiophene) for hybrid solar cell. Mater Res Bull 70:579–583. doi:10.1016/j.materresbull.2015.05.031

    Article  Google Scholar 

  12. Chevrier M, Kesters J, Blayo C et al (2016) Regioregular polythiophene—porphyrin supramolecular copolymers for optoelectronic applications. Macromol Chem Phys 217:445–458

    Article  Google Scholar 

  13. Li D, Wang J, Dong X et al (2013) Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. J Mater Sci 48:5930–5937. doi:10.1007/s10853-013-7388-4

    Article  Google Scholar 

  14. Xin Y, Ling Z, Li S et al (2012) Preparation of single conjugated polymer nanofibers with high opto-electric response. Mater Sci Eng B 177:1094–1097. doi:10.1016/j.mseb.2012.05.010

    Article  Google Scholar 

  15. Hai YZ, Ang DW, Iu HL et al (2015) Electrochemical molecular imprinted sensors based on electrospun nanofiber and determination of ascorbic acid. Nanalitycal Sci 31:793–798

    Google Scholar 

  16. Andre RS, Pavinatto A, Mercante L et al (2015) Improving the electrochemical properties of polyamide 6/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles. RSC Adv. doi:10.1039/C5RA15588F

    Google Scholar 

  17. Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synth Met 154:37–40. doi:10.1016/j.synthmet.2005.07.018

    Article  Google Scholar 

  18. Jagadeesh Babu V, Pavan Kumar VS, Sundaray B et al (2007) Preparation and characterization of electrospun nanofibers of Nylon-6 doped with copper(II) chloride. Mater Sci Eng B Solid-State Mater Adv Technol 142:46–50. doi:10.1016/j.mseb.2007.06.007

    Article  Google Scholar 

  19. Formhals A (1956) Artificial fiber construction. Patent. 1–28. doi: 10.1063/1.4811472

  20. Doshi J, Reneker DH (1993) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160. doi:10.1109/IAS.1993.299067

    Article  Google Scholar 

  21. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. doi:10.1002/adma.200400719

    Article  Google Scholar 

  22. Shi X, Zhou W, Ma D et al (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater 2015:1–20. doi:10.1155/2015/140716

    Google Scholar 

  23. Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569. doi:10.1002/app.21481

    Article  Google Scholar 

  24. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  25. Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. doi:10.1016/S1369-7021(06)71389-X

    Article  Google Scholar 

  26. Chen J-Y, Wu H-C, Chiu Y-C et al (2015) Electrospun poly(3-hexylthiophene) nanofibers with highly extended and oriented chains through secondary electric field for high-performance field-effect transistors. Adv Electron Mater 1400028:1–8. doi:10.1002/aelm.201400028

    Google Scholar 

  27. Chang HC, Liu CL, Chen WC (2013) Flexible nonvolatile transistor memory devices based on one-dimensional electrospun P3HT: au hybrid nanofibers. Adv Funct Mater 23:4960–4968. doi:10.1002/adfm.201300283

    Article  Google Scholar 

  28. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205. doi:10.1039/b809074m

    Article  Google Scholar 

  29. Lin H-J, Chen C-Y (2016) Thermo-responsive electrospun nanofibers doped with 1,10-phenanthroline-based fluorescent sensor for metal ion detection. J Mater Sci 51:1620–1631. doi:10.1007/s10853-015-9485-z

    Article  Google Scholar 

  30. Senthamizhan A, Balusamy B, Uyar T (2015) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306. doi:10.1007/s00216-015-9152-x

    Article  Google Scholar 

  31. Oliveira ON Jr, Aoki PH, Pavinatto FJ, Constantino CJ (2012) Controlled architectures in LbL films for sensing and biosensing. In: multilayer thin film. Seq Assem Nanocomposite Mater, 2nd edn. pp 951–984

  32. Wang J-Y, Su Y-L, Wu B-H, Cheng S-H (2016) Reusable electrochemical sensor for bisphenol a based on ionic liquid functionalized conducting polymer platform. Talanta 147:103–110. doi:10.1016/j.talanta.2015.09.035

    Article  Google Scholar 

  33. Li H-H, Wang H-H, Li W-T et al (2016) A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays. Sens Actuators B Chem 222:1127–1133. doi:10.1016/j.snb.2015.08.018

    Article  Google Scholar 

  34. Ates M (2013) A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng, C 33:1853–1859. doi:10.1016/j.msec.2013.01.035

    Article  Google Scholar 

  35. Cordova Mateo E, Poater J, da Cruz Teixeira Dias BJ et al (2014) Electroactive polymers for the detection of morphine. J Polym Res 21:1–13. doi:10.1007/s10965-014-0565-6

    Article  Google Scholar 

  36. Wang X, Kim YG, Drew C et al (2004) Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett 4:331–334. doi:10.1021/nl034885z

    Article  Google Scholar 

  37. Sahli R, Raouafi N, Maisonhaute E et al (2012) Thiophene-based electrochemically active probes for selective calcium detection. Electrochim Acta 63:228–231. doi:10.1016/j.electacta.2011.12.108

    Article  Google Scholar 

  38. Şenel M, Dervisevic M, Çevik E (2013) A novel amperometric glucose biosensor based on reconstitution of glucose oxidase on thiophene-3-boronic acid polymer layer. Curr Appl Phys 13:1199–1204. doi:10.1016/j.cap.2013.03.004

    Article  Google Scholar 

  39. Bernius MT, Inbasekaran M, O’Brien J, Wu W (2000) Progress with light-emitting polymers. Adv Mater 12:1737–1750. doi:10.1002/1521-4095(200012)12:23<1737:AID-ADMA1737>3.0.CO;2-N

    Article  Google Scholar 

  40. Olivati CA, Gonçalves VC, Balogh DT (2012) Optically anisotropic and photoconducting Langmuir-Blodgett films of neat poly(3-hexylthiophene). Thin Solid Films 520:2208–2210. doi:10.1016/j.tsf.2011.10.032

    Article  Google Scholar 

  41. Chen Y, Xie G, Xie T et al (2015) Thin film transistors based on poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester hetero-junction for ammonia detection. Chem Phys Lett 638:87–93. doi:10.1016/j.cplett.2015.07.026

    Article  Google Scholar 

  42. Ding B, Kim J, Miyazaki Y, Shiratori S (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens Actuators B Chem 101:373–380. doi:10.1016/j.snb.2004.04.008

    Article  Google Scholar 

  43. Correa DS, Medeiros ES, Oliveira JE et al (2014) Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications. J Nanosci Nanotechnol 14:6509–6527. doi:10.1166/jnn.2014.9362

    Article  Google Scholar 

  44. Sanfelice RC, Gonc VC, Av C et al (2014) Langmuir and Langmuir–Schaefer films of Poly(3-hexylthiophene) with gold nanoparticles and gold nanoparticles capped with 1-Octadecanethiol. J Phys Chem C 118:12944–12951. doi:10.1021/jp503083k

    Article  Google Scholar 

  45. Niles ET, Roehling JD, Yamagata H et al (2012) J-aggregate behavior in poly-3-hexylthiophene nanofibers. J Phys Chem Lett 3:259–263. doi:10.1021/jz201509h

    Article  Google Scholar 

  46. Roque AP, Mercante LA, Scagion VP et al (2014) Fluorescent PMMA/MEH-PPV electrospun nanofibers: investigation of morphology, solvent, and surfactant effect. J Polym Sci, Part B 52:1388–1394. doi:10.1002/polb.23574

    Article  Google Scholar 

  47. Kimling J, Maier M, Okenve B et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem C 110:15700–15707. doi:10.1021/jp061667w

    Article  Google Scholar 

  48. Perepichka IF, Perepichka DF, Meng H, Wudl F (2005) Light-emitting polythiophenes. Adv Mater 17:2281–2305. doi:10.1002/adma.200500461

    Article  Google Scholar 

  49. Shrotriya V, Ouyang J, Tseng RJ et al (2005) Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. Chem Phys Lett 411:138–143. doi:10.1016/j.cplett.2005.06.027

    Article  Google Scholar 

  50. Chan KHK, Yamao T, Kotaki M, Hotta S (2010) Unique structural features and electrical properties of electrospun conjugated polymer poly(3-hexylthiophene) (P3HT) fibers. Synth Met 160:2587–2595. doi:10.1016/j.synthmet.2010.10.009

    Article  Google Scholar 

  51. Tremel K, Ludwigs S (2014) Morphology of P3HT in thin films in relation to optical and electrical properties. Adv Polym Sci 265:39–82. doi:10.1007/12_2014_288

    Article  Google Scholar 

  52. Böckmann M, Schemme T, de Jong DH et al (2015) Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis. Phys Chem Chem Phys 17:28616–28625. doi:10.1039/C5CP03665H

    Article  Google Scholar 

  53. Wang C, Duong DT, Vandewal K et al (2015) Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films. Phys Rev B 91:1–7. doi:10.1103/PhysRevB.91.085205

    Google Scholar 

  54. Saini V, Li Z, Bourdo S et al (2009) Electrical, optical, and morphological properties of p3ht-mwnt nanocomposites prepared by in situ polymerization. J Phys Chem C 113:8023–8029

    Article  Google Scholar 

  55. Madhugiri S, Dalton A (2003) Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J Am Chem Soc 125:14531–14538. doi:10.1021/ja030326i

    Article  Google Scholar 

  56. Dong H, Wang D, Sun G, Hinestroza JP (2008) Assembly of metal nanoparticles on electrospun nylon 6 nanofibers.pdf. Chem Mater 20:6627–6632

    Article  Google Scholar 

  57. Vesali-Naseh M, Mortazavi Y, Khodadadi AA et al (2013) Plasma thiol-functionalized carbon nanotubes decorated with gold nanoparticles for glucose biosensor. Sensors Actuators 188:488–495. doi:10.1016/j.snb.2013.07.022

    Article  Google Scholar 

  58. Su W, Kim S-E, Cho M et al (2013) Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles. Innate Immun 19:388–397. doi:10.1177/1753425912465099

    Article  Google Scholar 

  59. Wang Q, Moser J-E, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953. doi:10.1021/jp052768h

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by FAPESP (Grant Numbers: 2014/16789-5, 2012/23880-3, and 2013/26712-7), CNPq (402.287/2013, 303.796/2014-6), MCTI-SisNano, CAPES, and EMBRAPA AgroNano Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafaela C. Sanfelice or Daniel S. Correa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanfelice, R.C., Mercante, L.A., Pavinatto, A. et al. Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J Mater Sci 52, 1919–1929 (2017). https://doi.org/10.1007/s10853-016-0481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0481-8

Keywords

Navigation