Skip to main content
Log in

Electrospun photoconductive nanofibers array films with different polymer substrates and fluorenone as photoconductive substance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photoconductive materials have important application value because of their special property of variable conductivity under light. Due to the limitations of the construction of single-component photoconductive materials, photoconductive materials are often combined with organic polymer materials to prepare composite materials. In this work, a series of photoconductive nanofibers array films (PNAFs) are prepared by combining polyvinyl pyrrolidone (PVP), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyoxyethylene (PEO) + PMMA, and polyvinylidene fluoride (PVDF) + PVP polymer substrates with 2,7-dibromo-9-fluorenone (DF), respectively, innovative combination of photoconductive materials with different polymers. PNAFs have excellent green fluorescence and electrical conductivity under light irradiation but no performance under no light irradiation. The transformation of performance can be achieved by the presence or absence of lighting. The effects of the combination of different substrates and photoconductive materials on the conductivity and fluorescent properties of the products are investigated for the first time. This provides ideas for the research of photoconductive materials in the future, and suitable combinations of inorganic and organic substances can be selected according to actual needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this manuscript or from the corresponding author upon reasonable request.

References

  1. H.J. Jin, K.J. Lee, C.M. Park, G.H. Shin, W. Hong, D. Oh, S.Y. Choi, J. Phys. D 54, 145301 (2021)

    Article  CAS  Google Scholar 

  2. H.N. Qi, Y.L. Hu, L. Yang, H. Shao, Q.L. Ma, D. Li, W.S. Yu, X.T. Dong, Eur. Polym. J 185, 111829 (2023)

    Article  CAS  Google Scholar 

  3. T.M. Aita, K. Iha, L. Hui, T. Higuchi, S. Sato, J. Mater. Sci. 42, 6279–6286 (2007)

    Article  CAS  Google Scholar 

  4. J.H. Park, O.O. Park, Appl. Phys. Lett. 89, 193101–193103 (2006)

    Article  Google Scholar 

  5. W.N. Yuan, G.D. Niu, Y.M. Xian, H.D. Wu, H.M. Wang, H. Yin, P. Liu, W.Z. Li, J.D. Fan, Adv. Funct. Mater. 29, 1900234 (2019)

    Article  Google Scholar 

  6. A. Singh, A. Pashkin, S. Winnerl, M. Helm, H. Schneider, ACS Photon. 5, 2718–2723 (2018)

    Article  CAS  Google Scholar 

  7. H.N. Qi, Y. Liu, X.H. Tang, Y.R. Xie, Q.L. Ma, W.S. Yu, X.T. Dong, D. Li, G.X. Liu, J.X. Wang, Mater. Chem. Front. 6, 2219–2232 (2022)

    Article  CAS  Google Scholar 

  8. W. Song, M.X. Li, C. Wang, X.F. Lu, Carbon Energy. 3, 101–128 (2021)

    Article  CAS  Google Scholar 

  9. M.Z. Liu, X.H. Li, C.L. Shao, C.H. Han, Y. Liu, X.W. Li, X.G. Ma, F.Y. Chen, Y.C. Liu, Energy Storage Mater. 44, 250–262 (2022)

    Article  Google Scholar 

  10. A. Belgibayeva, S. Berikbaikyzy, Y. Sagynbay, G. Turarova, I. Taniguchi, Z. Bakenov, J. Mater. Chem. A 11(2023), 11964–11986 (1986)

    Google Scholar 

  11. L. Zhang, H. J. Shang, Q. Zou, C. P. Feng, H. W. Gu, F. Z. Ding, Small, 2306125, (2024)

  12. H. Gao, B. Joshi, E. Samule, A. Khadka, S.W. Kim, A. Aldalbahi, M.E. Newehy, S.S. Yoon, Appl. Surf. Sci. 651, 159221 (2024)

    Article  CAS  Google Scholar 

  13. Y.A. Wang, X.Y. Li, Y.L. Zhang, X.H. Wang, Y.J. Liu, D. Wang, G.J. Liu, Y. Huang, J.Z. Shao, J. Mater. Chem. C 12, 254–261 (2024)

    Article  CAS  Google Scholar 

  14. W.Z. Li, J. Li, W.L. Ma, X.S. Zhang, Y. Liu, J. Luan, Talanta 269, 125496 (2024)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Deng, M.H. Yang, Q.X. Liu, C. Liu, X.G. Jian, Y.S. Chen, A.C.S. Appl, Nano Mater. (2024). https://doi.org/10.1021/acsanm.3c05523

    Article  Google Scholar 

  16. Q. Le, Z.L. Cheng, Appl. Surf. Sci. 623, 157109 (2023)

    Article  CAS  Google Scholar 

  17. J. Chen, T. Tang, Mater. Today Chem. 30, 101571 (2023)

    Article  CAS  Google Scholar 

  18. L.F. Li, F. Peng, G.Q. Zheng, K. Dai, C.T. Liu, C.Y. Shen, ACS Appl. Mater. Interfaces 12, 15938–15945 (2023)

    Article  Google Scholar 

  19. Q.Y. Han, S.Q. Wang, W.H. Ren, F.D. Zhang, Z.B. Tang, J. Wang, H.H. Wang, J Power Sources 581, 233459 (2023)

    Article  CAS  Google Scholar 

  20. Z. Xiong, Z.X. Wang, W. Zhou, Q. Liu, J.F. Wu, T.H. Liu, C.H. Xu, J.L. Liu, Energy Storage Mater. 57, 171–179 (2023)

    Article  Google Scholar 

  21. J. Lim, H. Park, S. Choi, H.S. Kim, Polym. Bull. 80, 11317–11327 (2023)

    Article  CAS  Google Scholar 

  22. M. Waqas, F.J.D. Sanchez, V.C. Menzel, I. Tudela, N. Radacsi, D. Ray, V. Koutsos, J. Appl, Polym. Sci. 43, e54586 (2023)

    Google Scholar 

  23. H.N. Qi, Y.R. Xie, Y. Liu, X.H. Tang, Q.L. Ma, W.S. Yu, X.T. Dong, D. Li, G.X. Liu, J.X. Wang, Appl. Mater. Today 24, 101086 (2021)

    Article  Google Scholar 

  24. X.H. Tang, H.N. Qi, Y. Liu, Y.R. Xie, Q.L. Ma, W.S. Yu, X.T. Dong, D. Li, G.X. Liu, J.X. Wang, J. Colloid Interface Sci. 601, 899–914 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. L.J. Diao, Q.L. Ma, W.S. Yu, G.X. Liu, J.X. Wang, X.T. Dong, Macromol. Mater. Eng. 6, 2100052 (2021)

    Article  Google Scholar 

  26. L.J. Diao, G.P. Li, Q.L. Ma, W.S. Yu, G.X. Liu, J.X. Wang, X.T. Dong, Mater. Chem. Phys. 267, 124717 (2021)

    Article  CAS  Google Scholar 

  27. Y.W. Kim, J.M. Park, C.S. Park, C.S. Park, H. Na, Y.W. Kang, W. Lee, J.Y. Sun, ACS Appl. Mater. Interfaces 3, 4013–4023 (2024)

    Article  Google Scholar 

  28. J.M. Xiong, W.J. Wu, Y.F. Hu, Z.Y. Guo, S. Wang, Appl. Mater. Today 34, 101909 (2023)

    Article  Google Scholar 

  29. H.N. Qi, G.Y. Wang, Q.L. Ma, D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, X.J. Zhang, J. Mater. Sci.-Mater. 33, 4438–4449 (2022)

    Article  CAS  Google Scholar 

  30. Y.H. Wang, H.N. Qi, H. Shao, Y.R. Xie, L. Yang, D.W. Sun, Q.L. Ma, W.S. Yu, X.T. Dong, Eur. Polym. J 192, 112079 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the Natural Science Foundation of Jilin Province of China (Grant Nos. YDZJ202201ZYTS388, YDZJ202101ZYTS130), Science and Technology Research Project of the Education Department of Jilin Province (Grant No. JJKH20230327KJ).

Funding

Funding was provided by Natural Science Foundation of Jilin Province of China (Grant Nos. YDZJ202201ZYTS388, YDZJ202101ZYTS130) and Science and Technology Research Project of the Education Department of Jilin Province (Grant No. JJKH20230327KJ).

Author information

Authors and Affiliations

Authors

Contributions

Haina Qi: Methodology, Investigation, Data curation, Writing-Original draft. Xuelian Jing: Methodology, Data curation, Investigation. Yaolin Hu: Methodology, Data curation, Investigation. Fei Bi: Data curation, Investigation. Liu Yang: Methodology, Data curation, Investigation. Xuejian Zhang: Validation, Investigation. Hongkai Zhao: Validation, Investigation. Yongtao Li: Investigation. Liyan Wang: Validation. Xiangting Dong: Conceptualization, Supervision, Methodology, Writing-Reviewing and Editing, Funding Acquisition.

Corresponding authors

Correspondence to Xuejian Zhang, Hongkai Zhao or Xiangting Dong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 699 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Jing, X., Hu, Y. et al. Electrospun photoconductive nanofibers array films with different polymer substrates and fluorenone as photoconductive substance. J Mater Sci: Mater Electron 35, 674 (2024). https://doi.org/10.1007/s10854-024-12392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12392-z

Navigation