Skip to main content
Log in

CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2–LiF molten melts

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Neodymium is produced commercially by the fused salt electrolysis of Nd2O3–NdF3–CaF2–LiF melt. The efficiency of the process is low due to the limited solubility of Nd2O3 in the fluoride melt. The suitability of making Nd directly from Nd2O3 by the FFC Cambridge process seems very attractive. The basic requirements for FFC Cambridge process are that (a) the oxide should not dissolve in the molten salt (usually CaCl2 or CaF2–LiF) and (b) the decomposition potential of oxide should be below the decomposition potential of salt. The present study was to understand the first requirement. It reports for the first time the in situ chemical interactions of Nd2O3 with molten CaCl2 and CaF2–LiF using confocal scanning laser microscope. In molten CaCl2, Nd2O3 reacts vigorously to form NdOCl. The product detaches from the parent Nd2O3 surface, exposing the oxide surface to further attack from molten CaCl2. The reaction rate becomes faster as the temperature increases. In a molten CaF2–LiF melt, Nd2O3 dissolves. Owing to the limited solubility of the oxide in CaF2–LiF melt, the direct electroreduction may still proceed in an oxide-saturated CaF2–LiF melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. doi:10.1016/j.jclepro.2012.12.037

    Article  Google Scholar 

  2. Humphries M (2012) Rare earth elements: the global supply chain. Congressional Research Service, 2011, 7-5700

  3. Gupta CK, Krishnamurthy N (2004) Extractive metallurgy of rare earths. CRC, Boca Raton

    Book  Google Scholar 

  4. Mukherjee A, Awasthi A, Krishnamurthy N (2016) Studies on calcium reduction of yttrium fluoride. Miner Process Extr Metall 125(1):p26–31

    Article  Google Scholar 

  5. Dennison DH, Tschetter MJ, Gschneidner KA Jr (1966) The solubility of tantalum in eight liquid rare-earth metals. J Less Common Metals 10(2):108–115. doi:10.1016/0022-5088(66)90119-6

    Article  Google Scholar 

  6. Dennison DH, Tschetter MJ, Gschneidner KA Jr (1966) The solubility of tantalum and tungsten in liquid rare-earth metals. J Less Common Metals 11(6):423–435. doi:10.1016/0022-5088(66)90089-0

    Article  Google Scholar 

  7. Druding LF (1960) Interactions of praseodymium and neodymium metals with their molten chlorides and iodides. Iowa State University, Ames, pp 1–82

    Google Scholar 

  8. Novoselova A, Smolenski V (2013) Electrochemical behavior of neodymium compounds in molten chlorides. Electrochim Acta 87:657–662. doi:10.1016/j.electacta.2012.09.064

    Article  Google Scholar 

  9. Hayashi H, Akabori M, Ogawa T, Minato K (2004) Spectrophotometric study of Nd2+ ions in LiCl–KCl eutectic melt. Zeitschrift Fur Naturforschung A 59(10):705–710

    Google Scholar 

  10. Chambers MF, Murphy JE (1991) Electrolytic production of neodymium metal from a molten chloride electrolyte. US Department of the Interior, Bureau of Mines, Reno, pp 1–7

    Google Scholar 

  11. Thudum R, Srivastava A, Nandi S, Nagaraj A, Shekhar R (2010) Molten salt electrolysis of neodymium: electrolyte selection and deposition mechanism. Miner Process Extr Metall 119(2):88–92

    Article  Google Scholar 

  12. Stefanidaki E, Hasiotis C, Kontoyannis C (2001) Electrodeposition of neodymium from LiF–NdF3–Nd2O3 melts. Electrochem Acta 46(17):2665–2670. doi:10.1016/S0013-4686(01)00489-3

    Article  Google Scholar 

  13. Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407(6802):361–364

    Article  Google Scholar 

  14. Abdelkader AM, Kilby KT, Cox A, Fray DJ (2013) DC voltammetry of electro-deoxidation of solid oxides. Chem Rev 113(5):2863–2886. doi:10.1021/cr200305x

    Article  Google Scholar 

  15. Gibilaro M, Pivato J, Cassayre L, Massot L, Chamelot P, Taxil P (2011) Direct electroreduction of oxides in molten fluoride salts. Electrochem Acta 56(15):5410–5415

    Article  Google Scholar 

  16. Mohandas KS (2013) Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: a review. Miner Process Extr Metall 122(4):195–212. doi:10.1179/0371955313Z.00000000069

    Article  Google Scholar 

  17. Jiang K, Hu X, Ma M, Wang D, Qiu G, Jin X, Chen GZ (2006) “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew Chem Int Ed 45(3):428–432. doi:10.1002/anie.200502318

    Article  Google Scholar 

  18. Liu J, Guo M, Jones PT, Verhaeghe F, Blanpain B, Wollants P (2007) In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags. J Eur Ceram Soc 27(4):1961–1972. doi:10.1016/j.jeurceramsoc.2006.05.107

    Article  Google Scholar 

  19. Michelic S, Goriupp J, Feichtinger S, Kang Y-B, Bernhard C, Schenk J (2016) Study on oxide inclusion dissolution in secondary steelmaking slags using high temperature confocal scanning laser microscopy. Steel Res Int 87:57–67. doi:10.1002/srin.201500102

    Article  Google Scholar 

  20. Liu J, Zhu L, Guo M, Verhaeghe F, Blanpain B, Wollants P (2008) In-situ observation of the dissolution of ZrO2 oxide particles in mould fluxes. Metall Res Technol 105(05):255–262. doi:10.1051/metal:2008039

    Google Scholar 

  21. Hagemann R, Pettsold L, Sheller P (2010) The process of oxide non-metallic inclusion dissolution in slag. Steelmaking 2(4):262–266

    Google Scholar 

  22. Monaghan BJ, Chen L, Sorbe J (2005) Comparative study of oxide inclusion dissolution in CaO–SiO2–Al2O3 slag. Ironmak Steelmak 32(3):258–264

    Article  Google Scholar 

  23. Orrling C, Fang Y, Phinichka N, Sridhar S, Cramb A (1999) Observing and measuring solidification phenomena at high temperatures. JOM-e 51(7)

  24. Orrling C, Sridhar S, Cramb A (2000) In situ observation of the role of alumina particles on the crystallization behavior of slags. ISIJ Int 40(9):877–885

    Article  Google Scholar 

  25. Yuki N, Shibata H, Emi T (1998) Solubility of MnS in Fe–Ni alloys as determined by in-situ observation of precipitation of MnS with a confocal scanning laser microscope. ISIJ Int 38(4):317–323. doi:10.2355/isijinternational.38.317

    Article  Google Scholar 

  26. Mohandas K, Fray D (2004) FFC cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview. Trans Indian Inst Metals 57(6):579–592

    Google Scholar 

  27. Blanchard TP (1992) Electrochemical studies of calcium chloride-based molten salt systems (LA-SUB-94-165). University of Tennessee, Knoxville, p 1992

    Book  Google Scholar 

  28. Wang S, Zhang F, Liu X, Zhang L (2008) CaO solubility and activity coefficient in molten salts CaCl2–x (x=0, NaCl, KCl, SrCl2, BaCl2 and LiCl). Thermochim Acta 470(1–2):105–107. doi:10.1016/j.tca.2008.02.007

    Article  Google Scholar 

  29. Xu C, Gao W (2000) Pilling–Bedworth ratio for oxidation of alloys. Mat Res Innovat 3(4):231–235. doi:10.1007/s100190050008

    Article  Google Scholar 

  30. Sharma RA, Seefurth RN (1988) Metallothermic reduction of Nd2O3 with Ca in CaCl2–NaCl melts. J Electrochem Soc 135(1):66–71

    Article  Google Scholar 

  31. Guo X, Sun Z, Van Dyck J, Guo M, Blanpain B (2014) In Situ observation on lime dissolution in molten metallurgical slags-kinetic aspects. Ind Eng Chem Res 53(15):6325–6333

    Article  Google Scholar 

  32. Guo X, Sietsma J, Yang Y (2014) Solubility of rare earth oxides in molten fluorides. In: 1st European rare earth resources conference, Milos, Greece, pp 149–155

  33. Stefanidaki E, Photiadis GM, Kontoyannis CG, Vik AF, Østvold T (2002) Oxide solubility and raman spectra of NdF3–LiF–KF–MgF2–Nd2O3 melts. J Chem Soc Dalton Trans 11:2302–2307

    Article  Google Scholar 

  34. Dysinger D, Murphy JE (1994) Electrowinning of neodymium from a molten oxide-fluoride electrolyte. U.S. Department of the Interior, Bureau of Mines, Reno, pp 1–8

    Google Scholar 

Download references

Acknowledgements

The authors thank KU Leuven for financial support (IOF-KP Rare3 Project). The authors thank Paul Crabbe and Joop Van Deursen for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Van Dyck, J., Blanpain, B. et al. CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2–LiF molten melts. J Mater Sci 52, 1717–1726 (2017). https://doi.org/10.1007/s10853-016-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0463-x

Keywords

Navigation