Skip to main content

Advertisement

Log in

Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, an effective electrochemical method was successfully developed to produce polyaniline/multiwalled carbon nanotubes nanocomposite on interdigitated platinum microelectrodes for the enhancement of biosensing performance. Morphology and structure of nanocomposite were investigated by field emission scanning electron microscopy and ultraviolet–visible spectroscopy. Fourier transform infrared spectroscopy technique was used to identify the presence of polyaniline/multiwalled carbon nanotubes on the surface of microelectrodes. IgG polyclonal antibodies against Japanese encephalitis virus (JEV) were immobilized onto nanocomposite-modified microelectrodes, acting as an electrochemical immunosensor for label-free detection of JEV antigens. Results showed that the linear detection range of the immunosensor for JEV antigens was 2–250 ng/mL. The electrochemical impedance spectroscopy analysis also indicated that a negligible response was found when the immunosensor exposed to non-specific molecules. This work showed the potential use of polyaniline/multiwalled carbon nanotubes nanocomposite in the platform of electrochemical immunosensors for label-free detection of pathogens and small biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Antje JB (2003) Biosensors for environmental pollutants and food contaminants. Anal Bioanal Chem 377:434–445

    Article  Google Scholar 

  2. Bobby P, Roland DM, Gordon P (2006) The role of biosensors in the detection of emerging infectious diseases. Analyst 131:1079–1090

    Article  Google Scholar 

  3. Jinseok H, Susan ZH (2009) An overview of recent strategies in pathogen sensing. Sensors 9:4483–4502

    Article  Google Scholar 

  4. Lam DT, Binh HN, Hieu VN, Hoang VT, Huy LN, Phuc XN (2011) Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater Sci Eng C 31:477–485

    Article  Google Scholar 

  5. McManus PM, Richard JC, Yang SC (1987) Influence of oxidation and protonation on the electrical conductivity of polyaniline. J Phys Chem 91:744–747

    Article  Google Scholar 

  6. Olivier L, Campo FJD, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  Google Scholar 

  7. Samir AB, Elizabeth E, Tomás EB, Carlos DG (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    Article  Google Scholar 

  8. André M, Roger CH (2004) Review of electronic and potical properties of semiconduction π-conjugated polymers: applications in optoelectronics. Polym Int 53:1397–1412

    Article  Google Scholar 

  9. Dominique ND, Fabienne PE (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chimica Acta 475:1–15

    Article  Google Scholar 

  10. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277

    Article  Google Scholar 

  11. Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z, Ramanavicius A (2013) Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sens Actuators B 189:187–193

    Article  Google Scholar 

  12. Tetsuma T, Tsuyoshi W, Sayuri T, Tadashi W (1994) Substrate-purging enzyme electrodes. Peroxidase/catalase electrodes for hydrogen peroxide with an improved upper sensing limit. Anal Chem 66:290–294

    Article  Google Scholar 

  13. Sai VVR, Sumeet M, Aliasgar Q, Contractor Soumyo M (2006) Immobilization of antibodies on polyaniline films and its application in a piezoelectric immunosensor. Anal Chem 78:8368–8373

    Article  Google Scholar 

  14. Miao YQ, Guan JG (2004) Probing of antibody-antigen reactions at electropolymerization polyaniline immunosensors using impedance spectroscopy. Anal Lett 37:1053–1062

    Article  Google Scholar 

  15. Tarushee A, Irfan AM, Devendra K, Rajesh (2007) Biomolercular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Article  Google Scholar 

  16. Tran QH, Nguyen THH, Mai AT, Nguyen TT, Vu QK, Phan TN (2012) Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus. Adv Nat Sci 3(1):015012

    Google Scholar 

  17. Ogura K, Shiigi H (1999) A CO2 sensing composite film consisting of base-type polyaniline and poly(vinyl alcohol). Electrochem Solid State Lett 2:478–480

    Article  Google Scholar 

  18. Shiyong B, Mingliang D, Ming Z, Han Z, Pan W, Tingting Y, Meiling Z (2014) Facile fabrication of polyaniline nanotubes/gold hybrid nanostructures as substrate materials for biosensors. Chem Eng J 258:281–289

    Article  Google Scholar 

  19. Dong L, Xue W, Jinxing D, Chenglong Z, Jinshan G, Peng L (2015) Crosslinked carbon nanotubes/polyaniline composites as a pseudocapacitive material with high cycling stability. Nanomaterials 5:1034–1047

    Article  Google Scholar 

  20. Tuan CV, Huy TQ, Tuan MA, Hieu NV, Trung T (2013) Polyaniline nanowires-based electrochemical immunosensor for label free detection of Japanese encephalitis virus. Anal Lett 46:1229–1240

    Article  Google Scholar 

  21. Yan XB, Han ZJ, Yang Y, Tay BK (2007) NO2 gas sensing with polyaniline nanofibers synthesized by a facile aquaeous/organic interfacial polymerization. Sens Actuator B 123:107–113

    Article  Google Scholar 

  22. Li GR, Feng ZP, Zhong JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178–2183

    Article  Google Scholar 

  23. Gabriel AR, Carmelo JF (2015) Electrochemical-fractal model versus randles model: a discussion about diffusion process. Int J Electrochem Sci 10:8484–8496

    Google Scholar 

  24. Van GP, Laureyn W, Laureys W (1998) Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens Actuator B 49:73–80

    Article  Google Scholar 

  25. Davies DR, Sheriff S, Padlan EA (1988) Antibody–antigen complexes. J Biol Chem 263:10541–10544

    Google Scholar 

  26. Georgios T, Garifallou GZ, Frank D, Paul AM, Tim DG, Higson SPJ (2008) Label-less immunosensor assay for myelin basic protein based upon an ac impedance protocol. Anal Chem 80:2058–2062

    Article  Google Scholar 

  27. Omowunmi AS, Jeanette MVE (1996) Applications of electrochemical immunosensors to environmental monitoring. Biosens Bioelectron 11:1–11

    Article  Google Scholar 

  28. Ionescu RE, Cosnier S, Herrmann S, Marks RS (2007) Amperometric immunosensor for the detection of anti-West Nile virus IgG. Anal Chem 79:8662–8668

    Article  Google Scholar 

  29. Tautgirdas R, Elisabeth C, Jenny E, Lo G, György MV (1996) Peroxidase-modified electrodes: fundamentals and application. Anal Chim Acta 330:123–138

    Article  Google Scholar 

  30. Wang R, Wang Y, Lassiter K, Li Y, Hargis B, Tung S, Berghman L, Bottje W (2009) Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta 79:159–164

    Article  Google Scholar 

  31. Huy TQ, Hanh NTH, Thuy NT, Chung PV, Nga PT, Tuan MA (2011) A novel biosensor based on serum antibody immobilization for rapid detection of viral antigens. Talanta 86:271–277

    Article  Google Scholar 

  32. Huy TQ, Hanh NTH, Chung PV, Anh DD, Nga PT (2011) Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors. Appl Surf Sci 257:7090–7095

    Article  Google Scholar 

  33. Tran QH, Mai AT, Nguyen TT, Pham VC, Nguyen THH (2012) Towards the use of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection. Adv Nat Sci 3(2):025013

    Google Scholar 

Download references

Acknowledgements

All authors would like to thank Dr. Tran Quang Huy (NIHE) for providing biological products and advices for the manuscript. This work was financially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) for a Basic Research Project, Coded: 103.02-2014.59.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tran Trung or Chu Van Tuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hien, H.T., Giang, H.T., Trung, T. et al. Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J Mater Sci 52, 1694–1703 (2017). https://doi.org/10.1007/s10853-016-0461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0461-z

Keywords

Navigation