Skip to main content

Advertisement

Log in

Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To create novel materials of skin tissue engineering, the blends of tannin-grafted poly(ɛ-caprolactone) (TA-g-PCL) and poly(l-lactic acid) (PLLA) have been prepared by electrospinning, and their corresponding characteristics are evaluated such as morphology, FTIR, thermodynamics, mechanics, wettability, as well as biocompatibility. TA-g-PCL and PLLA can be well blended to make smooth fibers, and fibrous diameter turns thinner with blending TA-g-PCL. At 15 wt%, the fibrous membrane shows higher tensile strength and elongation at a break than the other samples due to its best crystallinity. Membranous wettability drops with blending TA-g-PCL, but it increases sharply after incorporating PF108. At the same time, PLLA/TA-g-PCL fiber membrane is biocompatible. The biodegradable PLLA/TA-g-PLLA membrane is a promising candidate as skin tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Article  Google Scholar 

  2. Wang ZG, Wan LS, Liu ZM, Huang XJ, Xu ZK (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B 56:189–195

    Article  Google Scholar 

  3. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloid Surf B 39:125–131

    Article  Google Scholar 

  4. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  Google Scholar 

  5. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231

    Article  Google Scholar 

  6. Zong X, Ran S, Fang D, Hsiao BS, Chu B (2003) Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 44(17):4959–4967

    Article  Google Scholar 

  7. Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Enzymatic degradation of poly(l-lactide) and poly(ε-caprolactone) electrospun fibers. Macromol Biosci 4(12):1118–1125

    Article  Google Scholar 

  8. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56

    Article  Google Scholar 

  9. Li AD, Sun ZZ, Zhou M, Xu XX, Ma JY, Zheng W, Zhou HM, Li L, Zheng YF (2013) Electrospun Chitosan-graft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. Colloids Surf B 102:674–681

    Article  Google Scholar 

  10. Meng ZX, Zheng W, Li L, Zheng YF (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125(3):606–611

    Article  Google Scholar 

  11. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3(3):321–330

    Article  Google Scholar 

  12. Li JS, Li Y, Li L, Mak AFT, Ko F, Qin L (2009) Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polym Degrad Stab 94:1800–1807

    Article  Google Scholar 

  13. Jose MV, Thomas V, Dean DR, Nyairo E (2009) Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer 50:3778–3785

    Article  Google Scholar 

  14. Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Mater Sci Eng 30:1014–1021

    Article  Google Scholar 

  15. Duan UY, Jia J, Wang SH, Yan W, Jin L, Wang ZY (2007) Preparation of antimicrobial poly(ɛ-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106(2):1208–1214

    Article  Google Scholar 

  16. Chen KS, Hsiao YC, Kuo DY, Choua MC, Chud SC, Hsieh YS, Lin TH (2009) Tannic acid-induced apoptosis and -enhanced sensitivity to arsenic trioxide in human leukemia HL-60 cells. Leuk Res 33(2):297–307

    Article  Google Scholar 

  17. Sakagami H, Jiang Y, Kusama K, Atsumi T, Ueha T, Toguchi M, Iwakura I, Satoh K, Ito H, Hatano T, Yoshida T (2000) Cytotoxic activity of hydrolyzable tannins against human oral tumor cell lines—a possible mechanism. Phytomedicine 7(1):39–47

    Article  Google Scholar 

  18. Tikoo K, Sane MS, Gupta C (2011) Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol 251(3):191–200

    Article  Google Scholar 

  19. Kozlovskaya V, Zavgorodnya O, Chen Y, Ellis K, Tse HM, Cui W, Thompson JA, Kharlampieva E (2012) Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv Funct Mater 22(16):3389–3398

    Article  Google Scholar 

  20. Chen J, Kozlovskaya V, Goins A, Campos-Gomez J, Saeed M, Kharlampieva E (2013) Biocompatible shaped particles from dried multilayer polymer capsules. Biomacromolecules 14(11):3830–3841

    Article  Google Scholar 

  21. Dierendonck M, Fierens K, De Rycke R, Lybaert L, Maji S, Zhang Z, Zhang Q, Hoogenboom R, Lambrecht BN, Grooten J, Remon JP, De Koker S, De Geest B (2014) Nanoporous hydrogen bonded polymeric microparticles: facile and economic production of cross presentation promoting vaccine carriers. Adv Funct Mater 24(29):4634–4644

    Article  Google Scholar 

  22. Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS (2014) Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. Adv Mater 26(13):2001–2010

    Article  Google Scholar 

  23. Zhuk I, Jariwala F, Attygalle AB, Wu Y, Libera MR, Sukhishvili SA (2014) Self-defensive layer-by-Layer films with bacteria-triggered antibiotic release. ACS Nano 8(8):7733–7745

    Article  Google Scholar 

  24. Song P, Jiang SC, Ren YJ, Zhang X, Qiao TK, Song XF, Liu QM, Chen XS (2016) Synthesis and characterization of tannin grafted polycaprolactone. J Colloid Interface Sci 479:160–164

    Article  Google Scholar 

  25. Li HT, Qiao TK, Song P, Guo HL, Song XF, Zhang BC, Chen XS (2015) Star-shaped PCL/PLLA blended fiber membrane via electrospinning. J Biomater Sci Polym Ed 26(7):420–432

    Article  Google Scholar 

  26. Qiao TK, Song P, Guo HL, Song XF, Zhang BC, Chen XS (2016) Reinforced electrospun PLLA fiber membrane via chemical crosslinking. Eur Polym J 74:101–108

    Article  Google Scholar 

  27. Zhou H, Du T, Shen Y, Wang Z, Zheng Y, Haapasalo M (2015) In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod 41:56–61

    Article  Google Scholar 

  28. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  Google Scholar 

  29. Demir MM, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309

    Article  Google Scholar 

  30. Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893

    Article  Google Scholar 

  31. Dell’Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A (2001) Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends. Polymer 42(18):7831–7840

    Article  Google Scholar 

  32. Jaiswal AK, Chhabra H, Soni VP, Bellare JR (2013) Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone–gelatin scaffold with surface deposited nano-hydroxyapatite. Mater Sci Eng 33:2376–2385

    Article  Google Scholar 

  33. Li HT, Song P, Qiao TK, Cui QQ, Song XF, Zhang BC (2016) A quaternary composite fiber membrane for guided tissue regeneration. Polym Adv Technol 27(2):178–184

    Article  Google Scholar 

  34. Khang G, Choee JH, Rhee JM, Lee HB (2002) Interaction of different types of cells on physicochemically treated poly(l-lactide-co-glycolide) surfaces. J Appl Polym Sci 85:1253–1262

    Article  Google Scholar 

  35. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of Science and Technology bureau of Changchun (Grant No. 14KG106); Education Department of Jilin (Grant No. 2014123); and the Natural Science Foundation of Jilin province (Grant No. 20130102065JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Song, P., Guo, H. et al. Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. J Mater Sci 52, 1617–1624 (2017). https://doi.org/10.1007/s10853-016-0455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0455-x

Keywords

Navigation