Skip to main content
Log in

A novel low-temperature strategy for synthesis of alumina ceramics with uniform and interconnected pores by silica coating

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel method, which involves the coating of the inactive Al2O3 microspheres with silica sol, is employed to decrease the sintering temperature for preparing porous alumina ceramics, and the influences of coating thickness and sintering conditions are discussed. The results show that the mullite necks among packed Al2O3 spheres are formed with the help of colloidal coatings at 1550 °C, and the uniform and smooth pores are well reserved without visible shrinkage. In addition, the diffusion-controlled nucleation-growth process of mullite neck is set up based on EDS and XRD analysis, and the influence of inert surface of Al2O3 microspheres on mullitization kinetics is also revealed. Furthermore, the sintered necks grow and strengthen with the increase of the coating thickness because the available melt for thicker coating is more sufficient to meet capillary force. Besides, the ceramic strengthens with the increase of mullite content in necks, and the fracture mechanism transforms from glass crack to grain-boundary crack when the composition of necks changes from mullite/glass compounds to mullite. Finally, the synthesized porous ceramic shows excellent permeation flux, and its favorable pollution resistance is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89:1771–1789

    Article  Google Scholar 

  2. Wilkes J, Hagedorn YC, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting. Rapid Prototyp J 19:51–57

    Article  Google Scholar 

  3. Chevalier E, Chulia D, Pouget C, Viana M, Pharm J (2008) Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J Pharm Sci 97:1135–1154

    Article  Google Scholar 

  4. Yoon BH, Choi WY, Kim HE, Kim JH, Koh YH (2008) Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scr Mater 58:537–540

    Article  Google Scholar 

  5. Hammel EC, Ighodaro OLR, Okoli OI (2014) Processing and properties of advanced porous ceramics: an application based review. Ceram Int 40:15351–15370

    Article  Google Scholar 

  6. Sundaram S, Colombo P, Katoh Y (2013) Selected emerging opportunities for ceramics in energy, environment, and transportation. Int J Appl Ceram Technol 10:731–739

    Article  Google Scholar 

  7. Sun ZQ, Fan JM, Yuan FL (2015) Three-dimensional porous silica ceramics with tailored uniform pores: prepared by inactive spheres. J Eur Ceram Soc 35:3559–3566

    Article  Google Scholar 

  8. Fan L, Zhou M, Wang HJ, Shi ZQ, Lu XF, Wang C (2014) Low-temperature preparation of β-Si3N4 porous ceramics with a small amount of Li2O–Y2O3. J Am Ceram Soc 97:1371–1374

    Article  Google Scholar 

  9. Fung YLE, Wang H (2013) Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J Membr Sci 444:252–258

    Article  Google Scholar 

  10. Li G, Jiang Z, Jiang A, Zhang L (1997) Strengthening of porous Al2O3 ceramics through nanoparticle addition. Nanostruct Mater 8:749–754

    Article  Google Scholar 

  11. Goldsby JC (2001) High temperature mechanical behavior of polycrystalline alumina from mixed nanometer and micrometer powders. Ceram Int 27:701–703

    Article  Google Scholar 

  12. Deng ZY, Fukasawa T, Ando M, Zhang GJ, Ohji T (2001) High-surface area alumina ceramics fabricated by the decomposition of Al(OH)3. J Am Ceram Soc 84:485–491

    Article  Google Scholar 

  13. Mo CB, Cha SI, Kim KT, Lee KH, Hong SH (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mater Sci Eng A 395:124–128

    Article  Google Scholar 

  14. Shi X, Dong Y, Xu F, Tan Y, Wang L, J-m Yang (2011) Preparation and properties of nano-SiC strengthening Al2O3 composite ceramics. Mater Sci Eng A 528:2246–2249

    Article  Google Scholar 

  15. Törncrona A, Brandt J, Lowendahl L, Otterstedt J-E (1997) Sol–gel coating of alumina fibre bundles. J Eur Ceram Soc 17:1459–1465

    Article  Google Scholar 

  16. Deng ZY, Yang JF, Beppu Y, Ando M, Ohji T (2002) Effect of agglomeration on mechanical properties of porous zirconia fabricated by partial sintering. J Am Ceram Soc 85:1961–1965

    Article  Google Scholar 

  17. Deng ZY, Zhou Y, Inagaki Y, Ando M, Ohji T (2003) Role of Zr(OH)4 hard agglomerates in fabricating porous ZrO2 ceramics and the reinforcing mechanisms. Acta Mater 51:731–739

    Article  Google Scholar 

  18. Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1997) A ductile ceramic eutectic composite with high strength at 1,873 K. Nature 389:49–52

    Article  Google Scholar 

  19. Wong YH, Zhang Y, Liu XQ, Meng GY (2007) Sol-coated preparation and characterization of macroporous-Al2O3 membrane support. J Sol Gel Sci Technol 41:267–275

    Article  Google Scholar 

  20. Asadim N, Naderi R, Saremi M, Arman SY, Fedel M, Deflorian F (2014) Study of corrosion protection of mild steel by eco-friendly silane sol–gel coating. J Sol Gel Sci Technol 70:329–338

    Article  Google Scholar 

  21. Walker WJ Jr, Brown MC, Amarakoon VRW (2001) Aqueous powder coating methods for preparation of grain boundary engineered ceramics. J Eur Ceram Soc 21:2031–2036

    Article  Google Scholar 

  22. Ananthakumar S, Manohar P, Warrier KGK (2004) Effect of boehmite and organic binders on extrusion of alumina. Ceram Int 30:837–842

    Article  Google Scholar 

  23. Wei W-Ch, Halloran JW (1988) Transformation kinetics of diphasic aluminosilicate gels. J Am Ceram Soc 71:581–587

    Article  Google Scholar 

  24. Hulling JC, Messing GL (1991) Epitactic nucleation of spinel in aluminosilicate gels and its effect on mullite crystallization. J Am Ceram Soc 74:2374–2381

    Article  Google Scholar 

  25. Li DX, Thomson WJ (1990) Mullite formation kinetics of a single-phase gel. J Am Ceram Soc 73:964–969

    Article  Google Scholar 

  26. Kurajica S, Tkalcec E, Mandic V, Schmauch J (2011) Mullite crystallization kinetics of lanthanum doped sol–gel derived precursors. J Eur Ceram Soc 31:377–383

    Article  Google Scholar 

  27. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  Google Scholar 

  28. Ray CS, Yang Q, Huang W-H, Day DE (1996) Surface and internal crystallization in glasses as determined by differential thermal analysis. J Am Ceram Soc 79:3155–3160

    Article  Google Scholar 

  29. Eriksson G, Pelton AD (1993) Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO–Al2O3, Al2O3–SiO2 and CaO–Al2O3–SiO2 systems. Metall Trans B 24:807–816

    Article  Google Scholar 

  30. Sung YM (2000) Kinetics analysis of mullite formation reaction at high temperatures. Acta Mater 48:2157–2162

    Article  Google Scholar 

  31. Yu BY, Wei WC (2008) Growth of tabular α-Al2O3 grains on porous alumina substrate. J Am Ceram Soc 91:595–598

    Article  Google Scholar 

  32. Staley JRWG, Brindley GW (1969) Development of noncrystalline material in subsolidus reactions between silica and alumina. J Am Ceram Soc 52:616–619

    Article  Google Scholar 

  33. Davis RF, Pask JA (2006) Diffusion and reaction studies in the system Al2O3–SiO2. J Am Ceram Soc 55:525–531

    Article  Google Scholar 

  34. Pach L, Iratni A, Hrabe Z, Svetík S, Komarneni S (1995) Sintering and crystallization of mullite in diphasic gels. J Mater Sci 30:5490–5494. doi:10.1007/BF00351563

    Article  Google Scholar 

  35. Leivo J, Lindén M, Rosenholm JM (2008) Evolution of aluminosilicate structure and mullite crystallization from homogeneous nanoparticulate sol–gel precursor with organic additives. J Eur Ceram Soc 28:1749–1762

    Article  Google Scholar 

  36. Tkalcec E, Nass R, Schmidt H, Kurajica S, Bezjak A, Ivankovic H (1998) Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry. J Non Cryst Solids 223:57–72

    Article  Google Scholar 

  37. Sundaresan S, Aksay IA (1991) Mullitization of diphasic aluminosilicate gels. J Am Ceram Soc 74:2388–2392

    Article  Google Scholar 

  38. Tkalcec E, Kurajica S, Ivankovic H (2005) Diphasic aluminosilicate gels with two stage mullitization in temperature range of 1200–1300 °C. J Eur Ceram Soc 25:613–626

    Article  Google Scholar 

  39. Okada K, Kaneda J-I, Kameshima Y, Yasumori A, Takei T (2003) Crystallization kinetics of mullite from polymeric Al2O3–SiO2 xerogels. Mater Lett 57:3155–3159

    Article  Google Scholar 

  40. Douy A (2006) Crystallization of amorphous spray-dried precursors in the Al2O3–SiO2 system. J Eur Ceram Soc 26:1447–1454

    Article  Google Scholar 

  41. Lee JS, Yu SC (1992) Mullite formation kinetics of coprecipitated Al2O3–SiO2 gels. Mater Res Bull 27:405–416

    Article  Google Scholar 

  42. German RM (1997) Supersolidus liquid-phase sintering of prealloyed powders. Metall Mater Trans A 28:1553–1567

    Article  Google Scholar 

  43. Jagota A (1994) Simulation of the viscous sintering of coated particles. J Am Ceram Soc 77:2237–2239

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC Nos. 11535003, 51574211, and 11575228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Fan, J., Hu, P. et al. A novel low-temperature strategy for synthesis of alumina ceramics with uniform and interconnected pores by silica coating. J Mater Sci 52, 1603–1616 (2017). https://doi.org/10.1007/s10853-016-0454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0454-y

Keywords

Navigation