Skip to main content
Log in

Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we present a novel physical (or nonsolvent) route to fabricate a kind of Au/ZnO/NiO heterostructure photocatalytic composite. That is, a Zn layer upon Ni foam substrate is prepared by pulse electrodeposition, then the ZnO nanoneedle/NiO heterostructural composite is obtained via thermal oxidation, and at last, the composite is modified with the dispersively deposited Au nanoparticles (Au NPs) by ion sputtering. The surface plasmon resonance effect of the Au NPs significantly enhances the light absorption. Meanwhile, the Au NPs form a Schottky barrier with ZnO nanoneedles and further inhibit the recombination of photogenerated electron–hole pairs. In addition, due to the nonsolvent conditions, the introduction of impurities is avoided, and thus it shows strong photocatalytic stability. The experimental results reveal that, the optimized Au/ZnO/NiO composite exhibits up to two times photocatalytic performance on RB degradation and higher stability than that of regular ZnO/NiO composite. The present experimental strategy can also be used for other noble metals, and it is expected to have important application prospects in the fields of environmental purification, solar cells, hydrogen generation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  3. Yang LY, Dong SY, Sun JH, Feng JL, Wu QH, Sun SP (2010) Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst. J Hazard Mater 179:438–443

    Article  Google Scholar 

  4. Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B 54(1):19–24

    Article  Google Scholar 

  5. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B 23:89–114

    Article  Google Scholar 

  6. Zhang DF, Zeng FB (2012) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47(5):2155–2161. doi:10.1007/s10853-011-6016-4

    Article  Google Scholar 

  7. Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J Phys Chem 97(6):1184–1189

    Article  Google Scholar 

  8. Asahi RT, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  Google Scholar 

  9. Li DL, Jiang XD, Zhang YP, Zhang B (2013) A novel route to ZnO/TiO2 heterojunction composite fibers. J Mater Res 28(03):507–512

    Article  Google Scholar 

  10. Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  11. Lu J, Wang HH, Peng DL, Chen T, Dong SJ, Chang Y (2016) Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Phys E 78:41–48

    Article  Google Scholar 

  12. Lu WW, Liu GS, Gao SY, Xing ST, Wang JJ (2008) Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19(44):82–85

    Article  Google Scholar 

  13. Yu CL, Yang K, Xie Y, Fan QZ, Yu JC, Shu Q, Wang CY (2013) Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5(5):2142–2151

    Article  Google Scholar 

  14. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110(3):1348–1385

    Article  Google Scholar 

  15. Tan T, Li Y, Liu Y, Wang B, Song XM, Li E, Wang H, Yan H (2008) Two-step preparation of Ag/tetrapod-like ZnO with photocatalytic activity by thermal evaporation and sputtering. Mater Chem Phys 111(2):305–308

    Article  Google Scholar 

  16. Gingery D, Bühlmann P (2008) Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon 46(14):1966–1972

    Article  Google Scholar 

  17. Luo CZ, Li DL, Wu WH, Zhang YP, Pan CX (2014) Preparation of porous micronano-structure NiO/ZnO heterojunction and its photocatalytic property. RSC Adv 4:3090–3095

    Article  Google Scholar 

  18. Chen PK, Lee GJ, Anandan S, Wu JJ (2012) Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II. Mater Sci Eng B 177(2):190–196

    Article  Google Scholar 

  19. Zhang J, Liu XH, Wang LW, Yang TL, Guo XZ, Wu SH, Wang SR, Zhang SM (2011) Au-functionalized hematite hybrid nanospindles: general synthesis, gas sensing and catalytic properties. J Phys Chem C 115(13):5352–5357

    Article  Google Scholar 

  20. Ahmad M, Yingying S, Nisar A, Sun HY, Shen WC, Wei M, Zhu J (2011) Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J Mater Chem 21(21):7723–7729

    Article  Google Scholar 

  21. Yu K, Wu ZC, Zhao QR, Li BX, Xie Y (2008) High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J Phys Chem C 112(7):2244–2247

    Article  Google Scholar 

  22. Rodríguez JL, Valenzuela MA, Poznyak T, Lartundo L, Chairez I (2013) Reactivity of NiO for 2, 4-D degradation with ozone: XPS studies. J Hazard Mater 262:472–481

    Article  Google Scholar 

  23. Liu JW, Li XJ, Dai LM (2006) Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv Mater 18(13):1740–1744

    Article  Google Scholar 

  24. Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46(17):6980–6986

    Article  Google Scholar 

  25. Martha S, Parida KM (2012) Fabrication of nano N-doped In2Ga2ZnO7 for photocatalytic hydrogen production under visible light. Int J Hydrog Energy 37(23):17936–17946

    Article  Google Scholar 

  26. Al-Gaashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 39(3):2283–2292

    Article  Google Scholar 

  27. Wang W, Guo HT, Gao JP, Dong XH, Qin QX (2000) XPS, UPS and ESR studies on the interfacial interaction in Ni-ZrO2 composite plating. J Mater Sci 35(6):1495–1499. doi:10.1023/A:1004741215543

    Article  Google Scholar 

  28. Cui E, Lu GX (2014) Enhanced surface electron transfer by fabricating a core/shell Ni@NiO cluster on TiO2 and its role on high efficient hydrogen generation under visible light irradiation. Int J Hydrog Energy 39(17):8959–8968

    Article  Google Scholar 

  29. Luo CZ, Li DL, Wu WH, Yu CZ, Li WP, Pan CX (2015) Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Appl Catal B 166:217–223

    Article  Google Scholar 

  30. Natile MM, Glisenti A (2003) New NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: synthesis and characterization. Chem Mater 15(13):2502–2510

    Article  Google Scholar 

  31. Yin HH, Yu K, Song CQ, Huang R, Zhu ZQ (2014) Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity. ACS Appl Mater Interface 6(17):14851–14860

    Google Scholar 

  32. Sun LL, Zhao DX, Song ZM, Shan CX, Zhang ZZ, Li BH, Shen DZ (2011) Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. J Colloid Interface Sci 363(1):175–181

    Article  Google Scholar 

  33. Wender H, de Oliveira LF, Migowski P, Feil AF, Lissner E, Prechtl MHG, Teixeira SR, Dupont J (2010) Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J Phys Chem C 114(27):11764–11768

    Article  Google Scholar 

  34. Li P, Wei Z, Wu T, Peng Q, Li YD (2011) Au-ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133(15):5660–5663

    Article  Google Scholar 

  35. Mu JB, Shao CL, Guo ZC, Zhang ZY, Zhang MY, Zhang P, Chen B, Liu YC (2011) High photocatalytic activity of ZnO–carbon nanofiber heteroarchitectures. ACS Appl Mater Interface 3(2):590–596

    Article  Google Scholar 

  36. Wu JJ, Tseng CH (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B 66(1):51–57

    Article  Google Scholar 

  37. Kim J, Yong K (2012) A facile, coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity. J Nanoparticle Res 14(8):1–10

    Google Scholar 

  38. Song GS, Luo CZ, Fu Q, Pan CX (2016) Hydrothermal synthesis of the novel rutile-mixed anatase TiO2 nanosheets with dominant 001 facets for high photocatalytic activity. RSC Adv 6:84035–84041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (No. 2009CB939705), the National Nature Science Foundation of China (No. 11174227), and the Chinese Universities Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxu Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Luo, C., Li, D. et al. Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. J Mater Sci 52, 1285–1295 (2017). https://doi.org/10.1007/s10853-016-0424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0424-4

Keywords

Navigation