Skip to main content
Log in

TiO2/TiOxNY hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

A Correction to this article was published on 25 September 2019

This article has been updated

Abstract

TiO2/TiOxNy hollow mushrooms-like nanocomposite photocatalyst was prepared using atomic layer deposition (ALD) and reactive direct current magnetron sputtering, respectively. The preparation process depends on the aluminum oxide template (AOT) that was fabricated using the two-step anodization process after the Ni imprinting process. The chemical, morphological, and optical properties were recorded using different analyses such as XRD, SEM, EDX, and UV–Vis. From the SEM analyses, the AOT pore size increases from 177 to 305 nm after the pore widening process in H3PO4. The diameter of the TiO2 in the upper part is 352 nm, while the diameter of the TiO2/TiOxNy composite is 355 nm in the upper part. The estimated band gap values of TiO2 and TiO2/TiOxNy are 3.1 and 2.25 eV, respectively. From the values of band gaps, there is a clear enhancement in the optical absorption of the nanocomposite bilayers. The photoelectrochemical (PEC) behaviors of the TiO2/TiOxNy electrodes supported in Au/Ni metal thin film was measured in 1 M NaOH as scarifying reagent. The thermodynamic parameters were calculated, in which ΔE, ΔH*, and ΔS* values are 16.75 kJ mol−1, 15.87 kJ mol−1 and − 115.65 kJ mol−1 K−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 25 September 2019

    The original version of the article unfortunately contained an error in the author name. In the author group the correct name is “Sodky H. Mohamed”.

References

  1. M. Rabia, H.S.H. Mohamed, M. Shaban, S. Taha, Sci. Rep. 8, 1107 (2018)

    Article  Google Scholar 

  2. K. Maeda, K. Domen, J. Phys, Chem. C 111, 7851 (2007)

    CAS  Google Scholar 

  3. K. Maeda, K. Domen, J. Phys, Chem. Lett. 1, 2655 (2010)

    CAS  Google Scholar 

  4. W. Fan, Q. Lai, Q. Zhang, Y. Wang, J. Phys, Chem. C 115, 10694 (2011)

    CAS  Google Scholar 

  5. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  6. J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Angew. Chem. Inter. Ed. 47, 1766 (2008)

    Article  CAS  Google Scholar 

  7. C.A. Linkous, G.J. Carter, D.B. Locuson, A.J. Ouellette, D.K. Slattery, L.A. Smitha, Environ. Sci. Technol. 34, 4754 (2000)

    Article  CAS  Google Scholar 

  8. J.-K. Yang, A.P. Davis, Environ. Sci. Technol. 34, 3796 (2000)

    Article  CAS  Google Scholar 

  9. I. Hayakawa, Y. Iwamoto, K. Kikuta, S. Hirano, Sensor Actuators B 62, 55 (2000)

    Article  CAS  Google Scholar 

  10. Y. Zhu, J. Shi, Z. Zhang, C. Zhang, X. Zhang, Anal. Chem. 74, 120 (2002)

    Article  CAS  Google Scholar 

  11. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.A. Khairudin, B. Ghaffari, M. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sust. Energy Rev. 37, 397 (2014)

    Article  CAS  Google Scholar 

  12. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, J. Am. Chem. Soc. 126, 14943 (2004)

    Article  CAS  Google Scholar 

  13. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Langmuir 18, 7777 (2002)

    Article  CAS  Google Scholar 

  14. G. Liu, T. Wu, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 33, 2081 (1999)

    Article  CAS  Google Scholar 

  15. W. Xue-Wei, W. Da-Jian, L. Xiao-Jun, Chin. Phys. Lett. 26, 077809 (2009)

    Article  Google Scholar 

  16. M. Weissmann, L.A. Errico, Phys. B 398, 179 (2007)

    Article  CAS  Google Scholar 

  17. M.Y. Manuputty, J.A.H. Dreyer, Y. Sheng, E.J. Bringley, M.L. Botero, J. Akroyd, M. Kraft, Chem. Sci. 10, 1342 (2019)

    Article  CAS  Google Scholar 

  18. Z. Jiang, Y. Liu, T. Jing, B. Huang, Z. Wang, X. Zhang, X. Qin, Y. Dai, Appl. Catal. B 200, 230 (2017)

    Article  CAS  Google Scholar 

  19. R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, J. Phys, Chem. B 109, 5994 (2005)

    Article  CAS  Google Scholar 

  20. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  21. J.-E. Kim, M.-S. Kang, Bull. Korean Chem. Soc. 33, 2133 (2012)

    Article  CAS  Google Scholar 

  22. E. Molins, M. Benito, I. Mata, L. Martínez, L. Soler, J. Llorca, MRS Adv. 2, 3499 (2017)

    Article  CAS  Google Scholar 

  23. S.Z. Islam, S.E. Rankin, Mater. Chem. Phys. 182, 382 (2016)

    Article  CAS  Google Scholar 

  24. P. Patsalas, N. Kalfagiannis, S. Kassavetis, Materials 8, 3128 (2015)

    Article  CAS  Google Scholar 

  25. Z.H. Cen, B.X. Xu, J.F. Hu, R. Ji, Y.T. Toh, K.D. Ye, Y.F. Hu, J. Phys. D 50, 075105 (2017)

    Article  Google Scholar 

  26. M. Arunachalam, G. Yun, K. Ahn, W. Seo, D.S. Jung, S.H. Kang, Int. J. Hydrog. Energy 43, 16458 (2018)

    Article  CAS  Google Scholar 

  27. M. Pavlenko, K. Siuzdak, E. Coy, M. Jancelewicz, S. Jurga, I. Iatsunskyi, Int. J hydrog. Energy 42, 30076 (2017)

    Article  CAS  Google Scholar 

  28. T.T. Chen, H.P. Liu, Y.J. Wei, I.C. Chang, M.H. Yang, Y.S. Lin, K.L. Chan, Nanoscale 6, 5106 (2014)

    Article  CAS  Google Scholar 

  29. Y. Mi, L. Wen, R. Xu, Z. Wang, D. Cao, Y. Fang, Y. Lei, Adv. Energy Mater. 6, 1501496 (2015)

    Article  Google Scholar 

  30. M. Shaban, A.M. Ahmed, E. Abdel-Rahman, H. Hamdy, Microporous Mesoporous Mater. 198, 115 (2014)

    Article  CAS  Google Scholar 

  31. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Phys. Stat. Sol. A 201, 90 (2004)

    Article  CAS  Google Scholar 

  32. M. Shaban, M. Rabia, S. Ezzat, N. Mansour, E. Saeed, S. Sayyah, J. Nanophoton. 12, 016009 (2018)

    Article  Google Scholar 

  33. C. Chen, W. Yu, T. Liu, S. Cao, Y. Tsang, Sol. Energy Mater. Sol. Cells 160, 43 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is a part of a Project that supported from the Science Technology, Development Fund (STDF), Egypt (short term fellowship) that obtained by Dr. Mohamed Rabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabia, M., Mohamed, S.H., Zhao, H. et al. TiO2/TiOxNY hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration. J Porous Mater 27, 133–139 (2020). https://doi.org/10.1007/s10934-019-00792-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00792-0

Keywords

Navigation