Skip to main content
Log in

Effect of stamping deformation on microstructure and properties evolution of an Al–Mg–Si–Cu alloy for automotive panels

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of 5 % tensile deformation, which simulates the stamping process of Al–Mg–Si–Cu automotive outer panels, on the microstructural evolution during age strengthening, has been investigated. In addition, its benefit on key mechanical properties including hardness, yield strength, ductility, and corrosion resistance has been linked to the microstructural features. It was found that the aging precipitation sequence, SSSS → clusters and G.P. zones → β″ → β′ + Q′ → Q, was not influenced by the dislocations introduced through the stamping deformation prior to aging. On the other hand, stamping deformation could promote the formation of precipitates and refine the precipitates because of the enhanced heterogeneous nucleation and the accelerated precipitation kinetics, leading to superior strength of the alloy at the early stage. Meanwhile, the larger amount of Cu incorporated into nanoprecipitates leads to better intergranular corrosion resistance of the stamped alloy compared with the unstamped one. Due to the reduction in free Si amount at grain boundaries, the formation of fine subgrain structures and the increase of dislocation accumulation, the ductility of the stamped alloy was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hirsch J (1997) Aluminium alloys for automotive application. Mater Sci Forum 242:33–50. doi:10.4028/www.scientific.net/MSF.242.33

    Article  Google Scholar 

  2. Hirsch J (2004) Automotive trends in aluminium—the European perspective. Mater Forum 28:15–23

    Google Scholar 

  3. Warner T (2006) Recently-developed aluminium solutions for aerospace applications. Mater Sci Forum 519–521:1271–1278. doi:10.4028/www.scientific.net/MSF.519-521.1271

    Article  Google Scholar 

  4. Sakurai T (2008) The latest trends in aluminum alloys sheets for automotive body panels. Kobelco Technol Rev 28:22–28

    Google Scholar 

  5. Hirsch J (2011) Aluminium in innovative light-weight car design. Mater Trans 52(5):818–824. doi:10.2320/matertrans.L-MZ201132

    Article  Google Scholar 

  6. Kim J, Daniel Marioara C, Holmestad R, Kobayashi E, Sato T (2013) Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al–Mg–Si alloys. Mater Sci Eng, A 560:154–162. doi:10.1016/j.msea.2012.09.051

    Article  Google Scholar 

  7. Teichmann K, Marioara CD, Andersen SJ, Marthinsen K (2013) TEM study of β′ precipitate interaction mechanisms with dislocations and β′ interfaces with the aluminium matrix in Al–Mg–Si alloys. Mater Charact 75:1–7. doi:10.1016/j.matchar.2012.10.003

    Article  Google Scholar 

  8. Svenningsen G, Lein JE, Bjørgum A, Nordlien JH, Yu Y, Nisancioglu K (2006) Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys. Corros Sci 48(1):226–242. doi:10.1016/j.corsci.2004.11.025

    Article  Google Scholar 

  9. Larsen MH, Walmsley JC, Lunder O, Mathiesen RH, Nisancioglu K (2008) Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J Electrochem Soc 155(11):550–556. doi:10.1149/1.2976774

    Article  Google Scholar 

  10. Larsen MH, Walmsley JC, Lunder O, Nisancioglu K (2010) Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminum alloys. J Electrochem Soc 157(2):C61–C68. doi:10.1149/1.3261804

    Article  Google Scholar 

  11. Marioara CD, Andersen SJ, Jansen J, Zandbergen HW (2003) The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater 51(3):789–796. doi:10.1016/s1359-6454(02)00470-6

    Article  Google Scholar 

  12. De Geuser F, Lefebvre W, Blavette D (2006) 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Philos Mag Lett 86(4):227–234. doi:10.1080/09500830600643270

    Article  Google Scholar 

  13. Serizawa A, Hirosawa S, Sato T (2006) 3DAP Characterization and thermal stability of nano-scale clusters in Al–Mg–Si alloys. Mater Sci Forum 519–521:245–250. doi:10.4028/www.scientific.net/MSF.519-521.245

    Article  Google Scholar 

  14. Birol Y (2005) Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy. Mater Sci Eng, A 391(1–2):175–180. doi:10.1016/j.msea.2004.08.069

    Article  Google Scholar 

  15. He L, Zhang H, Cui J (2010) Effects of pre-ageing treatment on subsequent artificial ageing characteristics of an Al-1.01 Mg-0.68 Si-1.78 Cu alloy. J Mater Sci Technol 26(2):141–145. doi:10.1016/S1005-0302(10)60023-0

    Article  Google Scholar 

  16. Ding L, He Y, Wen Z, Zhao P, Jia Z, Liu Q (2015) Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times. J Alloys Compd 647:238–244. doi:10.1016/j.jallcom.2015.05.188

    Article  Google Scholar 

  17. Birol Y, Karlik M (2006) The interaction of natural ageing with straining in a twin-roll cast AlMgSi automotive sheet. Scr Mater 55(7):625–628. doi:10.1016/j.scriptamat.2006.06.009

    Article  Google Scholar 

  18. Masuda T, Takaki Y, Sakurai T, Hirosawa S (2010) Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al-0.6 mass% Mg-1.0 mass% Si alloy. Mater Trans 51(2):325–332. doi:10.2320/matertrans.L-M2009831

    Article  Google Scholar 

  19. Yassar RS, Field DP, Weiland H (2005) The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy; AA6022. Scr Mater 53(3):299–303. doi:10.1016/j.scriptamat.2005.04.013

    Article  Google Scholar 

  20. Teichmann K, Marioara CD, Andersen SJ, Pedersen KO, Gulbrandsen-Dahl S, Kolar M, Holmestad R, Marthinsen K (2011) HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy. Phil Mag 91(28):3744–3754. doi:10.1080/14786435.2011.593577

    Article  Google Scholar 

  21. Teichmann K, Marioara CD, Andersen SJ, Marthinsen K (2012) The effect of preaging deformation on the precipitation behavior of an Al–Mg–Si alloy. Metall Mater Trans A 43(11):4006–4014. doi:10.1007/s11661-012-1235-0

    Article  Google Scholar 

  22. Teichmann K, Marioara CD, Pedersen KO, Marthinsen K (2013) The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al–Mg–Si alloy. Mater Sci Eng, A 565:228–235. doi:10.1016/j.msea.2012.12.042

    Article  Google Scholar 

  23. Gupta A, Lloyd D, Bull M (1996) The properties and characteristics of two new aluminum automotive closure panel materials. SAE Technical Paper

  24. Standard BS 11846:1995 (1995) Determination of resistance to IGC of solution heat-treatable aluminium alloys. British Standards Institution

  25. Serizawa A, Hirosawa S, Sato T (2008) Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al–Mg–Si alloy. Metall Mater Trans A 39(2):243–251. doi:10.1007/s11661-007-9438-5

    Article  Google Scholar 

  26. Kim J, Kim S, Kobayashi E, Sato T (2014) Thermal stability and transition behavior of nanoclusters during two-step aging at 250 °C in Al–Mg–Si(–Cu) alloys. Mater Trans 55(5):768–773. doi:10.2320/matertrans.M2013411

    Article  Google Scholar 

  27. Vissers R, van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater 55(11):3815–3823. doi:10.1016/j.actamat.2007.02.032

    Article  Google Scholar 

  28. Sha G, Möller H, Stumpf WE, Xia JH, Govender G, Ringer SP (2012) Solute nanostructures and their strengthening effects in Al–7Si–0.6 Mg alloy F357. Acta Mater 60(2):692–701. doi:10.1016/j.actamat.2011.10.029

    Article  Google Scholar 

  29. Li K, Song M, Du Y, Zhang H (2011) Simulation of the electron diffraction patterns from needle/rod-like precipitates in Al–Mg–Si alloys. Mater Charact 62(9):894–903. doi:10.1016/j.matchar.2011.06.006

    Article  Google Scholar 

  30. Yang W, Wang M, Sheng X, Zhang Q, Huang L (2011) Precipitate characteristics and selected area diffraction patterns of the β′ and Q′ precipitates in Al–Mg–Si–Cu alloys. Philos Mag Lett 91(2):150–160. doi:10.1080/09500839.2010.541165

    Article  Google Scholar 

  31. Quainoo GK, Yannacopoulos S (2004) The effect of cold work on the precipitation kinetics of AA6111 aluminum. J Mater Sci 39(21):6495–6502

    Article  Google Scholar 

  32. Wang Z, Li H, Miao F, Fang B, Song R, Zheng Z (2014) Improving the strength and ductility of Al–Mg–Si–Cu alloys by a novel thermo-mechanical treatment. Mater Sci Eng, A 607:313–317. doi:10.1016/j.msea.2014.04.009

    Article  Google Scholar 

  33. Remøe MS (2014) The effect of alloying elements on the ductility of Al–Mg–Si alloys. Master's dissertation, Norwegian University, Institutt for materialteknologi

  34. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Simultaneously Increasing the ductility and strength of nanostructured alloys. Adv Mater 18(17):2280–2283. doi:10.1002/adma.200600310

    Article  Google Scholar 

  35. Prillhofer R, Rank G, Berneder J, Antrekowitsch H, Uggowitzer P, Pogatscher S (2014) Property criteria for automotive Al–Mg–Si sheet alloys. Materials 7(7):5047–5068. doi:10.3390/ma7075047

    Article  Google Scholar 

  36. Holmestad J, Ervik M, Marioara CD, Walmsley JC (2014) Investigation of grain boundaries in an Al–Mg–Si–Cu ALLOY. Mater Sci Forum 794–796:951–956. doi:10.4028/www.scientific.net/MSF.794-796.951

    Article  Google Scholar 

  37. Sha G, Yao L, Liao X, Ringer SP, Chao Duan Z, Langdon TG (2011) Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 111(6):500–505. doi:10.1016/j.ultramic.2010.11.013

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009), Postdoctoral Science Foundation of Central South University of China (502042057), Innovation-driven Project of Central South University (2015CX004) and Postdoctoral Science Foundation of China (2016M600634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Liu, S., He, X. et al. Effect of stamping deformation on microstructure and properties evolution of an Al–Mg–Si–Cu alloy for automotive panels. J Mater Sci 52, 5569–5581 (2017). https://doi.org/10.1007/s10853-016-0278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0278-9

Keywords

Navigation