Skip to main content
Log in

Formation mechanisms and evolution of precipitate-free zones at grain boundaries in an Al–Cu–Mg–Mn alloy during homogenisation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solute and vacancy depletion have long been investigated to reveal the formation mechanism of grain boundary precipitate-free zones (GB-PFZ) during ageing, yet there is no conclusive explanation due to the simultaneous appearance of the two in GB-PFZ. In this study, the evolution of GB-PFZs and solute distributions in the vicinity of grain boundaries (GBs) were studied during the homogenisation of an Al–Cu–Mg–Mn alloy using transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Results indicated that the evolution of GB-PFZ during homogenisation can be divided into the following three stages: Stage I, formation and recession of GB-PFZ; Stage II, absence of GB-PFZ, and Stage III, the reappearance and broadening of GB-PFZ. The results also revealed that the GB-PFZ in Stage I is totally devoid of solute depletion and its formation can be attributed to vacancy depletion alone. The GB-PFZ at Stage III solely caused by solute depletion and excludes vacancy depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chen JH, Costan E, Huis MA, Xu Q, Zandbergen HW (2006) Atomic-pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312:416–419

    Article  Google Scholar 

  2. Chrominski W, Lewandowska M (2016) Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater 103:547–557

    Article  Google Scholar 

  3. Lin YC, Zhang J, Liu G, Liang Y (2015) Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater Des 83:866–875

    Google Scholar 

  4. Liu SD, Chen B, Li CB, Dai Y, Deng YL, Zhang XM (2015) Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros Sci 91:203–212

    Article  Google Scholar 

  5. Liu H, Qiao X, Chen Z, Jiang R, Li X (2011) Effect of ultrasonic vibration during casting on microstructures and properties of 7050 aluminum alloy. J Mater Sci 46:3923–3927

    Article  Google Scholar 

  6. Lütjering G, Albrecht J, Sauer C, Krull T (2007) The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mater Sci Eng, A 468–470:201–209

    Article  Google Scholar 

  7. Xu DK, Rometsch PA, Li L, Shen LM, Birbilis N (2014) Critical conditions for the occurrence of quench cracking in an Al–Zn–Mg–Cu alloy. J Mater Sci 49:4687–4697

    Article  Google Scholar 

  8. Lin YC, Xia Y, Jiang Y, Zhou H, Li L (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng, A 565:420–429

    Article  Google Scholar 

  9. Morgeneyer TF, Starink MJ, Wang SC, Sinclair I (2008) Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater 56:2872–2884

    Article  Google Scholar 

  10. Krol T, Baither D, Nembach E (2004) The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater 52:2095–2108

    Article  Google Scholar 

  11. Okuda H, Ochiai S (2004) The effects of solute and vacancy depletion on the formation of precipitation-free zone in a model binary alloy examined by a Monte Carlo simulation. Mater Trans 45:1455–1460

    Article  Google Scholar 

  12. Hirosawa S, Oguri Y, Sato T (2005) Experimental and computational investigation of formation of precipitate free zones in an Al–Cu alloy. Mater Trans 46:1230–1234

    Article  Google Scholar 

  13. Raghavan M (1980) Microanalysis of precipitate free zones (PFZ) in Al–Zn–Mg and Cu–Ni–Nb alloys. Metall Trans A 11:993–999

    Article  Google Scholar 

  14. Shastry CR, Judd G (1972) An electron microprobe analysis of solute segregation near grain boundaries in an Al–Zn–Mg alloy. Metall Trans 3:779–782

    Article  Google Scholar 

  15. Ogura T, Hirosawa S, Sato T (2004) Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Sci Technol Adv Mater 5:491–496

    Article  Google Scholar 

  16. Hirosawa S, Sato T, Kamio A, Flower HM (2000) Classification of the role of microalloy elements in phase decomposition of Al based alloys. Acta Mater 48:1797–1806

    Article  Google Scholar 

  17. Tolley A, Mitlin D, Radmilovic V, Dahmen U (2005) Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy. Mater Sci Eng, A 412:204–213

    Article  Google Scholar 

  18. Okuda H, Ochiai S (2005) A Monte Carlo simulation on the PFZ microstructures in Al-based alloys during multistep annealing. Mater Sci Forum 475–479:937–940

    Article  Google Scholar 

  19. Starink MJ, Gregson PJ (1996) S′ and δ′ phase precipitation in SiCp reinforced A1-1.2 wt%Cu -1 wt% Mg-x Li alloys. Mater Sci Eng, A 211:54–65

    Article  Google Scholar 

  20. Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater 47:3855–3868

    Article  Google Scholar 

  21. Cai M, Robson JD, Lorimer GW (2007) Simulation and control of dispersoids and dispersoid-free zones during homogenizing an AlMgSi alloy. Scripta Mater 57:603–606

    Article  Google Scholar 

  22. Gandin CA, Jacot A (2007) Modeling of precipitate-free zone formed upon homogenization in a multi-component alloy. Acta Mater 55:2539–2553

    Article  Google Scholar 

  23. Chen YQ, Yi DQ, Jiang Y, Wang B, Liu HQ (2013) Concurrent formation of two different type precipitation-free zones during the initial stage of homogenization. Philos Mag 93:2269–2278

    Article  Google Scholar 

  24. Park JK, Ardell AJ (1992) Solute-enriched surface layers and X-ray microanalysis of thin foils of a commercial aluminium alloy. J Microsc 165:301–309

    Article  Google Scholar 

  25. Lorimer GW, Cliff G, Clark JN (1976) Developments in electron microscopy and analysis. Academic Press, London

    Google Scholar 

  26. Xie FY, Kraft T, Zuo Y, Moon CH, Chang YA (1999) Microstructure and microsegregation in Al rich Al–Cu–Mg alloys. Acta Mater 47:489–500

    Article  Google Scholar 

  27. Norman AF, Hyde K, Costello F, Thompson S, Birley S, Prangnell PB (2003) Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng, A 354:188–198

    Article  Google Scholar 

  28. McPhee WAG, Schaffer GB, Drennan J (2003) The effect of iron on liquid film migration and sintering of an Al–Cu–Mg alloy. Acta Mater 51:3701–3712

    Article  Google Scholar 

  29. Wang SB, Chen JH, Yin MJ, Liu ZR, Yuan DW, Liu JZ, Liu CH, Wu CL (2012) Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys. Acta Mater 60:6573–6580

    Article  Google Scholar 

  30. Liu ZR, Chen JH, Wang SB, Yuan DW, Yin MJ, Wu CL (2012) The structure and the properties of S-phase in AlCuMg alloys. Acta Mater 59:7396–7405

    Article  Google Scholar 

  31. Feng ZQ, Yang YQ, Huang B, Li MH, Chen YX, Ru JG (2014) Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. J Alloys Compd 583:445–451

    Article  Google Scholar 

  32. Wang J, Zhang B, Zhou YT, Ma XL (2015) Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024 Al alloy. Acta Mater 82:22–31

    Article  Google Scholar 

  33. Ogura T, Hirosawa S, Cerezo A, Sato T (2010) Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater 58:5714–5723

    Article  Google Scholar 

  34. Yukawa H, Urata Y, Morinaga M, Takahashi Y, Yoshida H (1995) Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metal Mater 43:681–688

    Article  Google Scholar 

  35. Hass M, Hosson JTM (2001) Grain boundary segregation and precipitation in aluminum alloys. Scripta Mater 44:281–286

    Article  Google Scholar 

  36. Macchi CE, Somoza A, Dupasquier A, Polmear IJ (2003) Secondary precipitation in Al–Zn–Mg–(Ag) alloys. Acta Mater 51:5151–5158

    Article  Google Scholar 

  37. Dons AL (2001) The Alstruc homogenization model for industrial aluminum alloys. J Light Met 1:133–149

    Article  Google Scholar 

  38. Yan L, Zhang Y, Li X, Li Z, Wang F, Liu H, Xiong B (2014) Microstructural evolution of Al-0.66 Mg-0.85Si alloy during homogenization. Trans Nonferrous Met Soc China 24:939–945

    Article  Google Scholar 

  39. Chen YQ, Yi DQ, Jiang Y, Wang B, Xu DZ, Li SC (2013) Twinning and orientation relationships of T-phase precipitates in an Al matrix. J Mater Sci 48:3225–3231

    Article  Google Scholar 

  40. Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215

    Article  Google Scholar 

  41. Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF (2013) Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng, A 580:150–158

    Article  Google Scholar 

  42. Wu Y, Xiong J, Lai R, Zhang X, Guo Z (2009) The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J Alloys Compd 475:332–338

    Article  Google Scholar 

  43. Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152

    Article  Google Scholar 

  44. Hirasawa H (1975) Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases. Scripta Metall 9:955–958

    Article  Google Scholar 

  45. Liu Y, Jiang D, Xie W, Hu J, Ma B (2014) Solidification phases and their evolution during homogenization of a DC cast Al–8.35Zn–2.5 Mg–2.25Cu alloy. Mater Charact 93:173–183

    Article  Google Scholar 

  46. Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139

    Article  Google Scholar 

  47. Shen F, Yi D, Jiang Y, Wang B, Liu H, Tang C, Shou W (2016) Semi-quantitative evaluation of texture components and fatigue properties in 2524 T3 aluminum alloy sheets. Mater Sci Eng, A 657:15–25

    Article  Google Scholar 

  48. Alil A, Popović M, Radetić T, Zrilić M, Romhanji E (2015) Influence of annealing temperature on the baking response and corrosion properties of an Al–4.6 wt% Mg alloy with 0.54 wt% Cu. J Alloys Compd 625:76–84

    Article  Google Scholar 

  49. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, Amsterdam

    Google Scholar 

  50. Michalcová A, Vojtĕch D, Čížek J, Procházka I, Drahokoupil J, Novák P (2011) Microstructure characterization of rapidly solidified Al–Fe–Cr–Ce alloy by positron annihilation spectroscopy. J Alloys Compd 509:3211–3218

    Article  Google Scholar 

  51. Zeng Q, Wen X, Zhai T (2009) Effect of precipitates on the development of P orientation 011 < 566 > in a recrystallized continuous cast AA 3004 aluminum alloy after cold rolling. Metall Mater Trans A 40:2488–2497

    Article  Google Scholar 

  52. Lucadamo G, Yang NYC, Marchi CS, Lavernia EJ (2006) Microstructure characterization in cryomilled Al 5083. Mater Sci Eng, A 430:230–241

    Article  Google Scholar 

  53. Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86

    Article  Google Scholar 

  54. Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919

    Article  Google Scholar 

  55. Robson JD, Jones MJ, Prangnell PB (2003) Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys. Acta Mater 51:1453–1468

    Article  Google Scholar 

  56. Matsuda K, Ikeno S, Sato T, Uetani Y (2006) New quaternary grain boundary precipitate in Al–Mg–Si alloy containing silver. Scripta Mater 55:127–129

    Article  Google Scholar 

  57. Huang YJ, Chen ZG, Zheng ZQ (2011) A conventional thermo-mechanical process of Al–Cu–Mg alloy for increasing ductility while maintaining high strength. Scripta Mater 64:382–385

    Article  Google Scholar 

  58. Yin D, Xiao Q, Chen Y, Liu H, Yi D, Wang B, Pan S (2016) Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater Des 95:329–339

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51405153 and 51475162) and by funds from the Major State Basic Research Projects of China (Grant No. 2012CB619506). We also thank Dr L.X. Wang and S.C. Li for their helpful discussion about this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.Q., Pan, S.P., Tang, S.W. et al. Formation mechanisms and evolution of precipitate-free zones at grain boundaries in an Al–Cu–Mg–Mn alloy during homogenisation. J Mater Sci 51, 7780–7792 (2016). https://doi.org/10.1007/s10853-016-0062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0062-x

Keywords

Navigation