Skip to main content
Log in

Preparation of a four-layer magnetic core–shell nanocomposite for the selective hydrogenation of cinnamic acid

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel magnetic mesoporous four-layer core–shell nanocomposite Fe3O4@nSiO2@ZrO2@Ni–Co–B was successfully fabricated by the combination of a modified Stöber sol–gel and self-assemble method. A facile template-free approach was employed to introduce the zirconia shell, which was more efficient than the conventional surfactant-templating method for the introduction of the mesoporous silica shell. This nanocomposite was composed of a ferroferric oxide core, an inner dense silica shell and a mesoporous zirconia shell in sequence and an outer Ni–Co–B amorphous alloy shell, as demonstrated by transmission electron microscope, X-ray energy dispersive spectroscopy, and nitrogen adsorption–desorption. It exhibited excellent catalytic performance in the selective hydrogenation of cinnamic acid to hydrocinnamic acid with almost 100 % yield. Additionally, it can be easily separated from the reaction mixture by using an external magnetic field due to its proper magnetic property and recycled effectively for five consecutive runs, making it an attractive candidate in efficient hydrogenations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5

Similar content being viewed by others

References

  1. Bartok M (1989) New catalytic materials from amorphous metal alloys. In: Eley DD, Pines H, Weisz PB (eds) Advance in Catalysis, vol 36. Elsevier Science, Amsterdam, pp 329–382

    Google Scholar 

  2. Li H, Wei W, Zhao Y, Li H (2015) Preparation and catalytic applications of amorphous alloys. In: Spivey JJ, Han YF, Dooley KM (eds) Catalysis, vol 27. The Royal Society of Chemistry, Cambridge, pp 144–186

    Google Scholar 

  3. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. doi:10.1021/cr040090g

    Article  Google Scholar 

  4. Li H, Wu Y, Zhang J, Dai W, Qiao M (2004) Liquid phase acetonitrile hydrogenation to ethylamine over a highly active and selective Ni–Co–B amorphous alloy catalyst. Appl Catal A 275:199–206. doi:10.1016/j.apcata.2004.07.034

    Article  Google Scholar 

  5. Mo M, Zheng M, Tang J, Lu Q, Xun Y (2014) Highly active Co-B, Co-Mo(W)-B amorphous nanotube catalysts for the selective hydrogenation of cinnamaldehyde. J Mater Sci 49:877–885. doi:10.1007/s10853-013-7771-1

    Article  Google Scholar 

  6. Wang W, Qiao Z, Zhang K, Liu P, Yang Y, Wu K (2014) Highly selective catalytic hydrodeoxygenation of Caromatic-OH in bio-oil to cycloalkanes on a Ce-Ni-W-B amorphous catalyst. RSC Adv 4:37288–37295. doi:10.1039/C4RA04364B

    Article  Google Scholar 

  7. Wei W, Zhao Y, Peng S, Zhang H, Bian Y, Li H (2014) Hollow Ni–Co–B amorphous alloy nanospheres: facile fabrication via vesicle-assisted chemical reduction and their enhanced catalytic performances. J Mater Chem A. 2:19253–19259. doi:10.1039/C4TA04533E

    Article  Google Scholar 

  8. Wang W, Yang Y, Luo H, Peng H, He B, Liu W (2011) Preparation of Ni(Co)-W-B amorphous catalysts for cyclopentanone hydrodeoxygenation. Catal Commun 12:1275–1279. doi:10.1016/j.catcom.2011.04.027

    Article  Google Scholar 

  9. Bai G, Niu L, Zhao Z, Li N, Li F, Qiu M (2012) Ni-La-B amorphous alloys supported on SiO2 and γ-Al2O3 for selective hydrogenation of benzophenone. J Mol Catal A 363–364:411–416. doi:10.1016/j.molcata.2012.07.018

    Article  Google Scholar 

  10. Xu D, Wang H, Guo Q, Ji S (2011) Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4. Fuel Process Technol 92:1606–1610. doi:10.1016/j.fuproc.2011.04.006

    Article  Google Scholar 

  11. Bai G, Dong H, Zhao Z, Chu H, Wen X, Liu C et al (2014) Effect of support and solvent on the activity and stability of NiCoB amorphous alloy in cinnamic acid hydrogenation. RSC Adv 4:19800–19805. doi:10.1039/C4RA01837K

    Article  Google Scholar 

  12. Armatas GS, Bilis G, Louloudi M (2011) Highly ordered mesoporous zirconia-polyoxometalate nanocomposite materials for catalytic oxidation of alkenes. J Mater Chem 21:2997–3005. doi:10.1039/C0JM03395B

    Article  Google Scholar 

  13. Chen A, Miyao T, Higashiyama K, Watanabe M (2014) High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation. Catal Sci Tech 4:2508–2511. doi:10.1039/C4CY00461B

    Article  Google Scholar 

  14. Violi IL, Zelcer A, Bruno MM, Luca V, Soler-Illia GJAA (2015) Gold nanoparticles supported in zirconia-ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst. ACS Appl Mater Inter 7:1114–1121. doi:10.1021/am5065188

    Article  Google Scholar 

  15. Li M, Li X, Qi X, Luo F, He G (2015) Shape-controlled synthesis of magnetic iron Oxide@SiO2-Au@C particles with core-shell nanostructures. Langmuir 31:5190–5197. doi:10.1021/acs.langmuir.5b00800

    Article  Google Scholar 

  16. Liu X, Shi L, Feng W, Niu L, Liu C, Bai G (2014) Preparation of magnetic mesoporous core-shell nanocomposites for cinnamic acid hydrogenation. RSC Adv 4:44302–44306. doi:10.1039/C4RA07176J

    Article  Google Scholar 

  17. Feng W, Dong H, Niu L, Wen X, Huo L, Bai G (2015) A novel Fe3O4@nSiO2@NiPd-PVP@mSiO2 multi-shell core-shell nanocomposite for cinnamic acid hydrogenation in water. J Mater Chem A 3:19807–19814. doi:10.1039/C5TA04894J

    Article  Google Scholar 

  18. Du G, Liu Z, Xia X, Chu Q, Zhang S (2006) Characterization and application of Fe3O4/SiO2 nanocomposites. J Sol-Gel Sci Technol 39:285–291. doi:10.1007/s10971-006-7780-5

    Article  Google Scholar 

  19. Shokouhimehr M, Shin K-Y, Lee JS, Hackett MJ, Jun SW, Oh MH, Jang J, Hyeon T (2014) Magnetically recyclable core-shell nanocatalysts for efficient heterogeneous oxidation of alcohols. J Mater Chem A 2:7593–7599. doi:10.1039/c4ta00032c

    Article  Google Scholar 

  20. Zhou L, Gao C, Xu W (2010) Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26:11217–11225. doi:10.1021/la100556p

    Article  Google Scholar 

  21. Park J, Kim M, Lee S, Jung J, Jang H, Upare P et al (2015) Preparation and characterization of carbon-encapsulated iron nanoparticles and their catalytic activity in the hydrogenation of levulinic acid. J Mater Sci 50:334–343. doi:10.1007/s10853-014-8592-6

    Article  Google Scholar 

  22. Mu B, Zhang W, Wang A (2014) Facile fabrication of superparamagnetic coaxial gold/halloysite nanotubes/Fe3O4 nanocomposites with excellent catalytic property for 4-nitrophenol reduction. J Mater Sci 49:7181–7191. doi:10.1007/s10853-014-8426-6

    Article  Google Scholar 

  23. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29. doi:10.1021/ja0777584

    Article  Google Scholar 

  24. Bai G, Lan X, Liu X, Liu C, Shi L, Chen Q, Chen G (2014) An ammonium molybdate deposited amorphous silica coated iron oxide magnetic core-shell nanocomposite for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide. Green Chem 16:3160–3168. doi:10.1039/C3GC42551G

    Article  Google Scholar 

  25. Widoniak J, Eiden-Assmann S, Maret G (2005) Synthesis and characterisation of monodisperse zirconia particles. Eur J Inorg Chem 15:3149–3155. doi:10.1002/ejic.200401025

    Article  Google Scholar 

  26. Wang C, Tao S, Wei W, Meng C, Liu F, Han M (2010) Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. J Mater Chem 20:4635–4641. doi:10.1039/C000315H

    Article  Google Scholar 

  27. Chen D, Liu J, Wang P, Zhang L, Ren J, Tang F (2007) Fabrication of monodisperse zirconia-coated core-shell and hollow spheres in mixed solvents. Colloids Surf A 302:461–466. doi:10.1016/j.colsurfa.2007.03.015

    Article  Google Scholar 

  28. Li H, Li H, Dai W, Wang W, Fang Z, Deng J (1999) XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties. Appl Surf Sci 152:25–34

    Article  Google Scholar 

  29. Dai W, Li H, Cao Y, Qiao M, Fan K, Deng J (2002) Evidence for the antioxidation effect of boron on the ultrafine amorphous Ni-B alloy catalyst. Langmuir 18:9605–9608. doi:10.1021/la026116l

    Article  Google Scholar 

  30. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13(10):3169–3183. doi:10.1021/cm0101069

    Article  Google Scholar 

  31. Du X, Zhang D, Gao R, Huang L, Shi L, Zhang J (2013) Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem Commun 49:6770–6772. doi:10.1039/C3CC42418A

    Article  Google Scholar 

  32. Chen Y, Lunsford SK, Song Y, Ju H, Falaras P, Kontos AG, Dionysiou DD (2011) Synthesis, characterization and electrochemical properties of mesoporous zirconia nanomaterials prepared by self-assembling sol-gel method with Tween 20 as a template. Chem Eng J 170:518–524. doi:10.1016/j.cej.2010.09.063

    Article  Google Scholar 

  33. Yuan Q, Liu Q, Song W, Feng W, Pu W, Sun L, Zhang Y, Yan C (2007) Ordered mesoporous Ce1-xZrxO2 solid solutions with crystalline walls. J Am Chem Soc 129:6698–6699. doi:10.1021/ja070908q

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the National Natural Science Foundation of China (21376060), the Natural Science Foundation of Hebei Province (B2014201024), and the Natural Science Foundation of Hebei University (2012jq03) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, X., Liu, X., Gao, X. et al. Preparation of a four-layer magnetic core–shell nanocomposite for the selective hydrogenation of cinnamic acid. J Mater Sci 51, 7669–7677 (2016). https://doi.org/10.1007/s10853-016-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0049-7

Keywords

Navigation