Skip to main content
Log in

Preparation of MWNT-g-poly(2,5-benzoxazole) (ABPBO) with excellent electromagnetic absorption properties in the Ku band via atom transfer radical polymerization (ATRP)

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel approach is developed to study the electromagnetic wave absorption properties based on chemical molecular structure in this work. The MWNT-g-ABPBO composite with core–shell structure, initiated by macromolecule MWNT-benzocyclobutene(ethyl 2-bromoisobutyrate) (MWNT-BCB(EBIB)) via ATRP method, exhibits outstanding electromagnetic wave absorption properties in the Ku band. Traditionally, the electromagnetic wave absorption occurs around the wavelength of 3 cm (at 8 GHz), while the studies on materials with absorption properties at the wavelength slightly under 1.5 cm (at 20 GHz), namely part of the Ku band, are limited. The absorption peak of MWNT-g-ABPBO composite, with the thickness of 2.8 mm, can reach −36 dB at 17.4 GHz, because of the excellent impedance matching between the initiator and monomers bearing highly conjunction chemical structure introduced by ATRP. Meanwhile, the maximum reflection loss (RL) was −47 dB at the frequency of 15.5 GHz and the effective absorption bandwidth (<−10 dB) is from 13 to 18 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 2
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dong J, Ullal R, Han J, Wei S, Ouyang X, Dong J, Gao W (2015) Partially crystallized TiO2 for microwave absorption. J Mater Chem A 3(10):5285–5288. doi:10.1039/C4TA05908E

    Article  Google Scholar 

  2. Zhang X, Rao Y, Guo J, Qin G (2016) Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 96:972–979

    Article  Google Scholar 

  3. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, Che R (2016) CoNi@ SiO2@ TiO2 and CoNi@ air@ TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28(3):486–490

    Article  Google Scholar 

  4. Liu X, Chen Y, Cui X, Zeng M, Yu R, Wang GS (2015) Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J Mater Chem A 3(23):12197–12204. doi:10.1039/C5TA01924A

    Article  Google Scholar 

  5. Durmus Z, Durmus A, Kavas H (2014) Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J Mater Sci 50(3):1201–1213. doi:10.1007/s10853-014-8676-3

    Article  Google Scholar 

  6. Lu MM, Cao WQ, Shi HL, Fang XY, Yang J, Hou ZL, Jin HB, Wang WZ, Yuan J, Cao MS (2014) Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A 2(27):10540–10547. doi:10.1039/C4TA01715C

    Article  Google Scholar 

  7. Wang Z, Wu L, Zhou J, Jiang Z, Shen B (2014) Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 6(21):12298–12302. doi:10.1039/C4NR03040K

    Article  Google Scholar 

  8. Fatras C, Frappart F, Mougin E, Frison PL, Faye G, Borderies P, Jarlan L (2015) Spaceborne altimetry and scatterometry backscattering signatures at C- and Ku-bands over West Africa. Remote Sens Environ 159:117–133. doi:10.1016/j.rse.2014.12.005

    Article  Google Scholar 

  9. Guan XH, Qu P, Guan X, Wang GS (2014) Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties dagger. RSC Adv 4(30):15579–15585. doi:10.1039/c4ra00659c

    Article  Google Scholar 

  10. Yang J, Zhang J, Liang CY, Wang M, Zhao PF, Liu MM, Liu JW, Che RC (2013) Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl Mater Interfaces 5(15):7146–7151. doi:10.1021/am4014506

    Article  Google Scholar 

  11. Baibarac M, Gómez-Romero P (2006) Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J Nanosci Nanotechnol 6(2):289–302

    Google Scholar 

  12. Bujakovic D, Andric M, Bondzulic B, Mitrovic S, Simic S (2015) Time-frequency distribution analyses of Ku-band radar doppler echo signals. Frequenz 69(3–4):119–128. doi:10.1515/freq-2014-0093

    Google Scholar 

  13. King J, Kelly R, Kasurak A, Duguay C, Gunn G, Rutter N, Watts T, Derksen C (2015) Spatio-temporal influence of tundra snow properties on Ku-band (17.2 GHz) backscatter. J Glaciol 61(226):267–279. doi:10.3189/2015JoG14J020

    Article  Google Scholar 

  14. Prigent C, Aires F, Jimenez C, Papa F, Roger J (2015) Multiangle backscattering observations of continental surfaces in Ku-Band (13 GHz) from satellites: understanding the signals, particularly in arid regions. IEEE Trans Geosci Remote Sens 53(3):1364–1373. doi:10.1109/tgrs.2014.2338913

    Article  Google Scholar 

  15. Zheng YJ, Gao J, Cao XY, Li SJ, Yang HH, Li WQ, Zhao Y, Liu HX (2015) A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band. Acta Physica Sinica. doi:10.7498/aps.64.024219

    Google Scholar 

  16. Wei J, Zhang S, Liu XY, Qian J, Hua JS, Li XX, Zhuang QX (2015) In situ synthesis of ternary BaTiO3/MWNT/PBO electromagnetic microwave absorption composites with excellent mechanical properties and thermostabilities. J Mater Chem A 3(15):8205–8214. doi:10.1039/c5ta01410g

    Article  Google Scholar 

  17. Yang HJ, Cao WQ, Zhang DQ, Su TJ, Shi HL, Wang WZ, Yuan J, Cao MS (2015) NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 7(13):7073–7077. doi:10.1021/acsami.5b01122

    Article  Google Scholar 

  18. Wang HY, Zhu DM, Zhou WC, Luo F (2015) Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials. J Magn Magn Mater 375:111–116. doi:10.1016/j.jmmm.2014.09.061

    Article  Google Scholar 

  19. Zou CW, Yao YD, Wei ND, Gong YC, Fu WD, Wang M, Jiang L, Liao XM, Yin GF, Huang ZB, Chen XC (2015) Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites. Compos Part B-Eng 77:209–214. doi:10.1016/j.compositesb.2015.03.030

    Article  Google Scholar 

  20. Li C, Huang Y, Chen JJ (2015) Dopamine-assisted one-pot synthesis of graphene@Ni@C composites and their enhanced microwave absorption performance. Mater Lett 154:136–139. doi:10.1016/j.matlet.2015.04.076

    Article  Google Scholar 

  21. Melvin GJH, Ni QQ, Suzuki Y, Natsuki T (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49(14):5199–5207. doi:10.1007/s10853-014-8229-9

    Article  Google Scholar 

  22. Joon S, Kumar R, Singh AP, Shukla R, Dhawan SK (2015) Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets. Mater Chem Phys 160:87–95. doi:10.1016/j.matchemphys.2015.04.010

    Article  Google Scholar 

  23. Zhang D, Cheng J, Yang X, Zhao B, Cao M (2014) Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. J Mater Sci 49(20):7221–7230. doi:10.1007/s10853-014-8429-3

    Article  Google Scholar 

  24. Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sour 294:180–186. doi:10.1016/j.jpowsour.2015.06.068

    Article  Google Scholar 

  25. Kim C-S, Yoo J-S, Jeong K-M, Kim K, Yi C-W (2015) Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration. J Power Sour 289:41–49. doi:10.1016/j.jpowsour.2015.04.010

    Article  Google Scholar 

  26. Mindemark J, Sun B, Törmä E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sour 298:166–170. doi:10.1016/j.jpowsour.2015.08.035

    Article  Google Scholar 

  27. Yang YK, Xie XL, Yang ZF, Wang XT, Cui W, Yang JY, Mai YW (2007) Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethane)-functionalized multiwalled carbon nanotubes. Macromolecules 40(16):5858–5867. doi:10.1021/ma0707077

    Article  Google Scholar 

  28. Hong CY, You YZ, Wu DC, Liu Y, Pan CY (2005) Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules 38(7):2606–2611. doi:10.1021/ma047736r

    Article  Google Scholar 

  29. Sakellariou G, Ji HN, Mays JW, Baskaran D (2008) Enhanced polymer grafting from multiwalled carbon nanotubes through living anionic surface-Initiated polymerization. Chem Mater 20(19):6217–6230. doi:10.1021/cm801449t

    Article  Google Scholar 

  30. Priftis D, Sakellariou G, Baskaran D, Mays JW, Hadjichristidis N (2009) Polymer grafted Janus multi-walled carbon nanotubes. Soft Matter 5(21):4272–4278. doi:10.1039/b908100c

    Article  Google Scholar 

  31. Eo SM, Oh SJ, Tan LS, Baek JB (2008) Poly(2,5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly(phosphoric acid). Eur Polymer J 44(6):1603–1612. doi:10.1016/j.eurpolymj.2008.03.024

    Article  Google Scholar 

  32. Wang SF, Bao GB, Lu ZB, Wu PP, Han ZW (2000) Effect of heat treatment on the structure and properties of poly(2,6-benzothiazole) (ABPBT) and poly(2,5-benzoxazole) (ABPBO). J Mater Sci 35(23):5873–5877. doi:10.1023/a:1026781013224

    Article  Google Scholar 

  33. Xie Z, Zhuang QX, Wang Q, Liu XY, Chen Y, Han ZW (2011) In situ synthesis and characterization of poly(2,5-benzoxazole)/multiwalled carbon nanotubes composites. Polymer 52(23):5271–5276. doi:10.1016/j.polymer.2011.09.013

    Article  Google Scholar 

  34. Chen Y, Zhang S, Liu XY, Pei QB, Qian J, Zhuang QX, Han ZW (2015) Preparation of solution-processable reduced graphene oxide/polybenzoxazole nanocomposites with improved dielectric properties. Macromolecules 48(2):365–372. doi:10.1021/ma502326v

    Article  Google Scholar 

  35. Liu J, Moo-Young J, McInnis M, Pasquinelli MA, Zhai L (2014) Conjugated polymer assemblies on carbon nanotubes. Macromolecules 47(2):705–712. doi:10.1021/ma401609q

    Article  Google Scholar 

  36. Liu XG, Li B, Geng DY, Cui WB, Yang F, Xie ZG, Kang DJ, Zhang ZD (2009) (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 47(2):470–474. doi:10.1016/j.carbon.2008.10.028

    Article  Google Scholar 

  37. Bottari G, de la Torre G, Guldi DM, Torres T (2010) Covalent and noncovalent phthalocyanine—carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem Rev 110(11):6768–6816

    Article  Google Scholar 

  38. Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A 38(18):3211–3234

    Article  Google Scholar 

  39. Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258(7):3184–3190. doi:10.1016/j.apsusc.2011.11.061

    Article  Google Scholar 

  40. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core-shell nanoparticles. Nanoscale 3(11):4474–4502. doi:10.1039/C1NR11000D

    Google Scholar 

  41. Zhao S, Gao Z, Chen C, Wang G, Zhang B, Chen Y, Zhang J, Li X, Qin Y (2016) Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98:196–203

    Article  Google Scholar 

  42. Yamamoto T, Kimura T, Shiraishi K (1999) Preparation of pi-conjugated polymers composed of hydroquinone, p-benzoquinone, and p-diacetoxyphenylene units. optical and redox properties of the polymers. Macromolecules 32(26):8886–8896. doi:10.1021/ma9907946

    Article  Google Scholar 

  43. Zhang XJ, Jenekhe SA (2000) Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules 33(6):2069–2082. doi:10.1021/ma991913k

    Article  Google Scholar 

  44. Izuhara D, Swager TM (2009) Electroactive block copolymer brushes on multiwalled carbon nanotubes. Macromolecules 42(15):5416–5418. doi:10.1021/ma9006076

    Article  Google Scholar 

  45. Goodman MD, Xu J, Wang J, Lin Z (2009) Semiconductor conjugated polymer—quantum dot nanocomposites at the air/water interface and their photovoltaic performance. Chem Mater 21(5):934–938

    Article  Google Scholar 

  46. Chen Y, Liu XY, Mao XY, Zhuang QX, Xie Z, Han ZW (2014) Gamma-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability. Nanoscale 6(12):6440–6447. doi:10.1039/c4nr00353e

    Article  Google Scholar 

  47. Lee JH, Jang YK, Hong CE, Kim NH, Li P, Lee HK (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sour 193(2):523–529. doi:10.1016/j.jpowsour.2009.04.029

    Article  Google Scholar 

  48. Song Y, Ye G, Lu Y, Chen J, Wang J, Matyjaszewski K (2016) Surface-initiated ARGET ATRP of poly (glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions. ACS Macro Lett 5(3):382–386

    Article  Google Scholar 

  49. Zhang Y, Zhang A, Ding L, Lu H, Zheng Y (2016) The effect of polymer spatial configuration on the microwave absorbing properties of non-covalent modified MWNTs. Compos A Appl Sci Manuf 81:264–270

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Innovation Research Program of Science and Technology Commission of Shanghai (13JC1402002), the National Natural Science Foundation of China (contract Grant Numbers are 51573045), and the Key Laboratory of Advanced Polymer Materials of Shanghai (Grant No. ZD20150202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinxin Li or Qixin Zhuang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Liu, X., Cui, ZK. et al. Preparation of MWNT-g-poly(2,5-benzoxazole) (ABPBO) with excellent electromagnetic absorption properties in the Ku band via atom transfer radical polymerization (ATRP). J Mater Sci 51, 7370–7382 (2016). https://doi.org/10.1007/s10853-016-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0027-0

Keywords

Navigation