Skip to main content
Log in

Characterization microwave absorption from active carbon/BaSmxFe12−xO19/polypyrrole composites analyzed with a more rigorous method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

There are problems with the conventional method of determining reflection loss for microwave absorption material. In particular, it is concluded that the ability of a material to absorb microwaves is related with sample thickness of the material. Based on this wrong conclusion, a model is then proposed on the quarter-wavelength’s sample thickness. However, it is shown in the present work that the conclusion together with the model is incorrect and that the associated experimental work needs therefore to be re-evaluated. In this work we evaluate our own experimental work on microwave absorption of a composite correctly and demonstrate the errors in the previous method. C/BaSmxFe12−xO19 has been prepared by the hydrothermal method and C/BaSmxFe12−xO19/PPY by in situ polymerization. The microwave absorption of the composites has then been characterized with an appropriate method. The maximum reflection loss was achieved at x = 0.2 consistently for both C/BaSmxFe12−xO19 and C/BaSmxFe12−xO19/PPY. The result shows that the components of active carbon, polypyrrole, and ferrite in the composites have a positive cooperating effect on microwave absorption. It is also clearly demonstrated that the result is independent of sample thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles. J. Mater. Chem. C 2, 5885–5891 (2014)

    Article  CAS  Google Scholar 

  2. Y. Liu, J. Wei, Y. Guo, T. Yang, Z. Xu, Phase transition, interband electronic transitions and enhanced ferroelectric properties in Mn and Sm co-doped bismuth ferrite films. RSC Adv. 6, 96563–96572 (2016)

    Article  CAS  Google Scholar 

  3. K. Yang, Y. Liu, M.G.B. Drew, Y. Liu, Preparation and characterization of BaSmxFe12–xO19/polypyrrole composites. J. Mater. Sci.: Mater. Electron. 29(15), 13148–13160 (2018)

    CAS  Google Scholar 

  4. C. Li, Y. Zhang, S. Ji, X. Jiang, Z. Zhang, L. Yu, Microwave absorption properties of γ-Fe2O3/(SiO2)x–SO3H/polypyrrole core/shell/shell microspheres. J. Mater. Sci. 53, 5270–5286 (2018)

    Article  CAS  Google Scholar 

  5. J. Jin, Y. Liu, M.G.B. Drew, Y. Liu, Preparation and characterizations of Ba1-xPbxFe12O19/polypyrrole composites. J. Mater. Sci.: Mater. Electron. 28, 11325–11331 (2017)

    CAS  Google Scholar 

  6. F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites: a review and prospective. Composites B 137, 260–277 (2018)

    Article  CAS  Google Scholar 

  7. Y. Liu, R. Tai, M.G.B. Drew, Y. Liu, Preparation and characterizations of active carbon/barium ferrite/polypyrrole composites. J. Mater. Sci.: Mater. Electron. 28, 6448–6455 (2017)

    CAS  Google Scholar 

  8. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  9. T. Zheng, J. Wu, Enhanced piezoelectric activity in high-temperature Bi1 – x–ySmxLayFeO3 lead-free ceramics. J. Mater. Chem. C 3, 3684–3693 (2015)

    Article  CAS  Google Scholar 

  10. C.-J. Cheng, A.Y. Borisevich, D. Kan, I. Takeuchi, V. Nagarajan, Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588–2596 (2010)

    Article  CAS  Google Scholar 

  11. R. Che, Y. Jiang, L. Wei, X. He, Preparation and thermal analysis kinetics of the core–nanoshell composite materials doped with Sm. J. Therm. Anal. Calorim. 116, 905–913 (2014)

    Article  CAS  Google Scholar 

  12. Y. Liu, X. Li, M.G.B. Drew, Y. Liu, Increasing microwave absorption efficiency in ferrite based materials by doping with lead and forming composites. Mater. Chem. Phys. 162(15), 677–685 (2015)

    Article  CAS  Google Scholar 

  13. Y. Liu, H. Yu, M.G.B. Drew, Y. Liu, A systemized parameter set applicable to microwave absorption for ferrite based materials. J. Mater. Sci.: Mater. Electron. 29(2), 1562–1575 (2018)

    CAS  Google Scholar 

  14. Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8, 34686–34698 (2016)

    Article  CAS  Google Scholar 

  15. P. Liu, V. Ming, H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9, 16404–16416 (2017)

    Article  CAS  Google Scholar 

  16. C. Li, S. Ji, X. Jiang, G.I.N. Waterhouse, Z. Zhang, L. Yu, Microwave absorption by watermelon-like microspheres composed of c-Fe2O3, microporous silica and polypyrrole. J. Mater. Sci. 53, 9635–9649 (2018)

    Article  CAS  Google Scholar 

  17. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/grapheme nanocomposites and their dual-region microwave absorption performance. Small magnetic Co-doped NiZn ferrite/grapheme nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  CAS  Google Scholar 

  18. B. Zhao, L. Liang, J. Deng, Z. Bai, J. Liu, X. Guo, K. Gao, W. Guo, R. Zhang, 1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm 19, 6579–6587 (2017)

    Article  CAS  Google Scholar 

  19. B. Zhao, J. Liu, X. Guo, W. Zhao, L. Liang, C. Ma, R. Zhang, Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Phys. Chem. Chem. Phys. 19, 9128–9136 (2017)

    Article  CAS  Google Scholar 

  20. W. Xu, Y.-F. Pan, W. Wei, G.-S. Wang, Nanocomposites of oriented nickel chains with tunable magnetic properties for high-performance broadband microwave absorption. ACS Appl. Nano Mater. 1, 1116–1123 (2018)

    Article  CAS  Google Scholar 

  21. H. Liu, Y. Li, M. Yuan, G. Sun, H. Li, S. Ma, Q. Liao, Y. Zhang, In situ preparation of cobalt nanoparticles decorated in N–doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl. Mater. Interfaces 10(26), 22591–22601 (2018)

    Article  CAS  Google Scholar 

  22. Y. He, S. Pan, L. Cheng, J. Luo, Y. Xu, J. Yu, J. Chang, Effect of Dy, Pr on microwave absorption properties of Ce2Co17 alloy. J. Mater. Sci.: Mater. Electron. 29, 12624–12631 (2018)

    CAS  Google Scholar 

  23. J. Xi, Y. Liu, Y. Wu, J. Hu, W. Gao, E. Zhou, H. Chen, Z. Chen, Y. Chen, C. Gao, Multifunctional bicontinuous composite foams with ultralow percolation thresholds. ACS Appl. Mater. Interfaces 10, 20806–20815 (2018)

    Article  CAS  Google Scholar 

  24. P. He, Z.-L. Hou, K.-L. Zhang, J. Li, K. Yin, S. Feng, S. Bi, Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52, 8258–8267 (2017)

    Article  CAS  Google Scholar 

  25. J. Feng, Z. Li, Y. Jia, B. Yang, S. Liu, X. Zhao, L. Li, L. Zuo, Significant high-frequency electromagnetic wave absorption performance of Ni2 + xMn1–xGa alloys. J. Mater. Sci. 53, 11779–11790 (2018)

    Article  CAS  Google Scholar 

  26. Y. Liu, K. Zhao, M. Drew, Y. Liu, A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv. 8, 015223 (2018)

    Article  Google Scholar 

  27. L. Zhang, Y. Zong, Z. Li, K. Huang, Y. Sun, Y. Lan, H. Wu, X. Li, X. Zheng, Design of spinous Ni/N-GN nanocomposites as novel magnetic/dielectric microwave absorbents with highefficiency absorption performance and thin thickness. J. Mater. Sci. 53, 9034–9045 (2018)

    Article  CAS  Google Scholar 

  28. X. Liu, C. Hao, H. Jiang, M. Zeng, R. Yu, Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 5, 3770–3778 (2017)

    Article  CAS  Google Scholar 

  29. N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng, N. Hu, S.-Y. Fu, Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 9, 2973–2983 (2017)

    Article  CAS  Google Scholar 

  30. C. Zhang, B. Wang, J. Xiang, C. Su, C. Mu, F. Wen, Z. Liu, Microwave absorption properties of CoS2 nanocrystals embedded into reduced graphene oxide. ACS Appl. Mater. Interfaces 9, 28868–28875 (2017)

    Article  CAS  Google Scholar 

  31. W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou, G. Ji, A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018)

    Article  CAS  Google Scholar 

  32. K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou, H. Duan, H. Liu, Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 10, 11333–11342 (2018)

    Article  CAS  Google Scholar 

  33. Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C. Xiong,. L. Dong, Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10, 13860–13868 (2018)

    Article  CAS  Google Scholar 

  34. S. Zhou, Y. Huang, X. Liu, J. Yan, X. Feng, Synthesis and microwave absorption enhancement of CoNi@SiO2@C hierarchical structures. Ind. Eng. Chem. Res. 57, 5507–5516 (2018)

    Article  CAS  Google Scholar 

  35. P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016)

    Article  CAS  Google Scholar 

  36. F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011)

    Article  CAS  Google Scholar 

  37. D. Chen, F. Luo, W. Zhou, D. Zhu, Effect of Ti3SiC2 addition on microwave absorption property of plasma sprayed Ti3SiC2/NASICON coatings. J. Mater. Sci.: Mater. Electron. 29(16), 13534–13540 (2018)

    CAS  Google Scholar 

  38. Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan, G. Tong, Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10, 16511–16520 (2018)

    Article  CAS  Google Scholar 

  39. C. Zhang, C. Mu, J. Xiang, B. Wang, F. Wen, J. Song, C. Wang, Z. Liu, Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites. J. Mater. Sci. 52, 13023–13032 (2017)

    Article  CAS  Google Scholar 

  40. W. Chu, Y. Wang, Y. Du, R. Qiang, C. Tian, X. Han, FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. J. Mater. Sci. 52, 13636–13649 (2017)

    Article  CAS  Google Scholar 

  41. J. Zhou, Y. Chen, H. Li, R. Dugnani, Q. Du, H. UrRehman, H. Kang, H. Liu, Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. J. Mater. Sci. 53, 4067–4077 (2018)

    Article  CAS  Google Scholar 

  42. J. Deng, S. Li, Y. Zhou, L. Liang, B. Zhao, X. Zhang, R. Zhang, Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci. 509, 406–413 (2018)

    Article  CAS  Google Scholar 

  43. S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8, 19011–19023 (2018)

    Article  CAS  Google Scholar 

  44. Y. Liu, M.G.B. Drew, Y. Liu, Optimizing the methods of synthesis for barium hexagonal ferrite—an experimental and theoretical study. Mater. Chem. Phys. 134, 266–272 (2012)

    Article  CAS  Google Scholar 

  45. Y. Liu, M.G.B. Drew, Y. Liu, Y. Liu., F.L. Cao, A comparative study of Fe3O4/polyaniline composites with octahedral and microspherical inorganic kernels. J. Mater. Sci. 49(10), 3694–3704 (2014)

    Article  CAS  Google Scholar 

  46. Y. Wu, Y. Liu, W. Wang, J. Wang, C. Zhang, Z. Wu, P. Yan, K. Li, Microwave absorption enhancement and loss mechanism of lamellar MnO2 nanosheets decorated reduced graphene oxide hybrid. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0354-9

    Article  Google Scholar 

  47. G.M. Shi, L. Sun, X. Wang, X. Bao, Excellent electromagnetic wave absorption properties of LaOCl/C/MnO composites. J. Mater. Sci.: Mater. Electron. 29(3), 2236–2243 (2018)

    CAS  Google Scholar 

  48. Y. Liu, R. Tai, M.G.B. Drew, Y. Liu, Several theoretical perspectives of ferrite based materials—part 1: transmission-line theory and microwave absorption. J. Supercond. Nov. Magn. 30(9), 2489–2504 (2017)

    Article  CAS  Google Scholar 

  49. J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen, S. Li, S. Li, J. Yang, R. Zhang, Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018)

    Article  CAS  Google Scholar 

  50. Laird Tech Notes: Theory and Application of RF/Microwave Absorbers. https://www.lairdtech.com/sites/default/files/public/ABS-CS-RF%20Microwave%20Absorbers-Laird_081214.pdf

  51. Y. Zuo, Z. Yao, H. Lin, J. Zhou, P. Liu, W. Chen, C. Shen, Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties. J. Alloys Compd. 746, 496–502 (2018)

    Article  CAS  Google Scholar 

  52. S. Li, Y. Huang, N. Zhang, M. Zong, P. Liu, Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J. Alloys Compd. 774, 532–539 (2019)

    Article  CAS  Google Scholar 

  53. A.N. Hapishah, M.M. Syazwan, M.N. Hamidon, Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite, J. Mater. Sci.: Mater. Electron. 29, 20573–20579 (2018)

    CAS  Google Scholar 

  54. J. Gu, Y. Xie, W. Chen, C. Hu, F. Qiao, Z. Xu, X. Liu, X. Zhao, G. Zhang, Inter-diffusion of Cu2+ ions into CuS nanocrystals confines the microwave absorption properties. CrystEngComm 20, 6565–6572 (2018)

    Article  CAS  Google Scholar 

  55. Z. Lou, Y. Li, H. Han, H. Ma, L. Wang, J. Cai, L. Yang, C. Yuan, J. Zou, Synthesis of porous 3D Fe/C composites from waste wood with tunable and excellent electromagnetic wave absorption performance. ACS Sustain. Chem. Eng. 6, 15598–15607 (2018)

    Article  CAS  Google Scholar 

  56. C. Zhou, C. Wu, M. Yan, Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth. ACS Appl. Nano Mater. 1, 5179–5187 (2018)

    Article  CAS  Google Scholar 

  57. S. Gao, Q. An, Z. Xiao, S. Zhai, D. Yang, Controllable N–doped carbonaceous composites with highly dispersed Ni nanoparticles for excellent microwave absorption. ACS Appl. Nano Mater. 1, 5895–5906 (2018)

    Article  CAS  Google Scholar 

  58. J. Qiao, D. Xu, L. Lv, X. Zhang, F. Wang, W. Liu, J. Liu, Self-assembled ZnO/Co hybrid nanotubes prepared by electrospinning for lightweight and high-performance electromagnetic wave absorption. ACS Appl. Nano Mater. 1, 5297–5306 (2018)

    Article  CAS  Google Scholar 

  59. Y. Wang, C. Li, X. Han, D. Liu, H. Zhao, Z. Li, P. Xu, Y. Du, Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1, 5366–5376 (2018)

    Article  CAS  Google Scholar 

  60. X. Liang, B. Quan, J. Chen, W. Gu, B. Zhang, G. Ji, Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications. ACS Appl. Nano Mater. 1, 5712–5721 (2018)

    Article  CAS  Google Scholar 

  61. H. Li, S. Bao, Y. Li, Y. Huang, J. Chen, H. Zhao, Z. Jiang, Q. Kuang, Z. Xie, Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 10, 28839–28849 (2018)

    Article  CAS  Google Scholar 

  62. D. Kuang, L. Hou, S. Wang, B. Yu, D. Lianwen, L. Lin, H. Huang, J. He, M. Song, Enhanced electromagnetic wave absorption of Ni–C core-shell nanoparticles by HCP-Ni phase. Mater. Res. Express 5, 095013 (2018)

    Article  CAS  Google Scholar 

  63. I. Oransky, A. Marcus, Harvard and the Brigham call for more than 30 retractions of cardiac stem cell research. STAT. https://www.statnews.com/2018/10/14/harvard-brigham-retractions-stem-cell/. Accessed 14 Oct 2018

  64. Harvard calls for retraction of dozens of studies by noted cardiologist, New York Times. http://www.staradvertiser.com/2018/10/16/news/harvard-calls-for-retraction-of-dozens-of-studies-by-noted-cardiologist/. Accessed 16 Oct 2018

  65. Y. Liu, M.G.B. Drew, Y. Liu, Similarity between chemistry and mathematics in reasoning. Chem. Educ. 23, 231–236 (2018)

    CAS  Google Scholar 

  66. V.I. Chizhik, Y.S. Chemyshev, A.V. Donects, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, New York, 2014)

    Book  Google Scholar 

  67. Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging, A Signal Processing Perspective (IEEE Press, New York, 2000)

    Google Scholar 

  68. C.K. Mann, T.J. Vickers, W.M. Gulick, Instrumental Analysis (Harper & Row, New York, 1974)

    Google Scholar 

  69. Y. Liu, R. Tai, Y. Liu, Crystal field and magnetic properties. Huaxue Jiaoyu (Chin. J. Chem. Educ.) 36(6), 1–10 (2015). (in Chinese)

    Google Scholar 

  70. Y. Liu, Y. Liu, M.G.B. Drew, The use of three simple related procedures in determining the Russell-Saunders terms of equivalent electrons. Chem. Educ. 17, 118–124 (2012)

    Google Scholar 

  71. Y. Liu, B. Liu, Y. Liu, M.G.B. Drew, Observations on calculations of configuration interaction and basis set superposition error. Chem. Educ. 16, 202–205 (2011)

    CAS  Google Scholar 

  72. B. Lambet, E.P. Mazzola, Nuclear Magnetic Resonance Spectroscopy, An Introduction to Principles, Applications, and Experimental Methods (Prentice-Hall, Upper Saddle River, 2003)

    Google Scholar 

  73. Y. Liu, Y. Liu, M.G.B. Drew, Correlation between Fourier series expansion and Hückel orbital theory. J. Math. Chem. 51(2), 503–531 (2013)

    Article  CAS  Google Scholar 

  74. Y. Liu, J. Jin, M.G.B. Drew, Y. Liu, Several theoretical perspectives of ferrite based materials—parts 2: close packing model for crystal structure. J. Supercond. Nov. Magn. 30(10), 2777–2789 (2017)

    Article  CAS  Google Scholar 

  75. M. Nespolo, Comments on the article ‘comparison of calculations for interplanar distances in a crystal lattice’. Crystallogr. Rev. 23(4), 302–303 (2017)

    Article  CAS  Google Scholar 

  76. B.K. Vainshtein, V.M. Fridkin, V.L. Indenbom, Structure of Crystals (Modern Crystallography vol. 2). Second, Enlarged Edition (Springer, Berlin, 1995), pp. 139, 349, 359, 362–363

    Google Scholar 

  77. https://en.wikipedia.org/wiki/Diamond_cubic

  78. C. Hammond, The Basics of Crystallography and Diffraction. Third Edition. International Union of Crystallography (Oxford University Press, Oxford, 2009), pp. 63–76

    Google Scholar 

  79. R. Desiraju, Perspectives in Supramolecular Chemistry (Crystal Design: Structure and Function. Volume 7), (Wiley, Chichester, 2003), pp. 82 84, 90

    Google Scholar 

  80. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory, Application to the Physics of Condensed Matter (Springer, Berlin, 2008), pp. 196, 210, 230–233 250

    Google Scholar 

  81. A. Authier, Physical Properties of Crystals (International Tables for Crystallography, Volume D) (Kluwer Academic Publishers, London, 2003), p. 446

    Google Scholar 

  82. W. Fischer, H. Burzlaff, E. Hellner, J.D.H. Donnay, Space Groups and Lattice Complexes (U.S. Department of Commerce, National Bureau of Standards, Washington, DC, 1973)

    Book  Google Scholar 

  83. M. Nespolo, The ash heap of crystallography: restoring forgotten basic knowledge. J. Appl. Cryst. 48, 1290–1298 (2015)

    Article  CAS  Google Scholar 

  84. Q. Fan, A new method of calculating interplanar spacing: the position-factor method. J. Appl. Cryst. 45, 1303–1308 (2012)

    Article  CAS  Google Scholar 

  85. Q. Fan, A new method of calculating planar density: the position-duplication-number method. J. Appl. Cryst. 49, 1454–1458 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendices

There are many experimental reports published every year in which the theoretical background of the work is neglected and therefore needs to be re-evaluated [63, 64]. It can be argued that the research community is dependent more upon the state-of-the-art equipment and more interested in beautiful presentations than in fundamental theory and real understanding. Attractive often comes from mis- or incomplete understanding while real understanding usually comes from rudiments. Taking this into account, the Appendices provided here are included to encourage a keen interest in the rudiments of science for researchers in the field of microwave absorbing material.

The corrections made in this work demonstrated that there are theoretical background gaps between material researchers and physicians. It is a common practice to leave out the hardest elementary derivations in a presentation to achieve conciseness and clarity. However, this procedure, may give the impression that such understanding is not required by experimentalists and as a result theory is pushed further into the background. As shown in Appendix 4.3, the ability to conquer a problem or gain real understanding in research sometimes relies on the skills obtained from elementary scientific training. The derivations are detailed so that they should be easily followed by material researchers. An active attitude toward the rudiments of science is beneficial in solving scientific problems instead of only making attraction [65].

Appendix 1 The procession of magnetic moment in magnetic field

In classical physics the magnetic states of a material in microwave are related to procession of magnetic moment. The motion of a classical magnetic moment µ in a static magnetic field B0 (=µH0) is described by Eq. 8 [13].

$$\frac{{d{\mathbf{\mu }}}}{{dt}}=\gamma {\mathbf{\mu }} \times {{\mathbf{B}}_0}=\gamma {\mathbf{\mu }} \times {B_0}{\mathbf{k}}$$
(8)

γ is the gyromagnetic ratio. Mutually perpendicular unit vectors are indicated by i, j, k. If B is directed along the z axis with amplitude B0 then

$$\left\{ \begin{aligned} {\mu _{xy}}(t)= & \mu _{{xy}}^{0}{e^{ - j\gamma {B_0}t}}= \mu _{{xy}}^{0}{e^{ - j{\omega _0}t}} \\ {\mu _z}(t)= & \mu _{z}^{0} \\ \end{aligned} \right.$$
(9)

µxy(0) and µz(0) are the initial values for the components of µ.

$${\mu _{xy}}={\mu _x}\mathbf{i}+{\mu _y}\mathbf{j}$$
(10)

Equations 9 and 10 illustrate the fact that the magnetic moment is processing around the magnetic field, or the z-axis. ω0 can be either in (with respecte to negative charge) or opposite to (with respect to positive charge) the direction of k. If ω0 is the counterclockwise rotation [3] with respect to the right-hand coordinate system

$${{\mathbf{\omega }}_0}= - \gamma {{\mathbf{B}}_0}= - {\omega _0}{\mathbf{k}}$$
(11)
$$\begin{aligned} \left( {\begin{array}{*{20}{c}} {{\mu _x}(t)} \\ {{\mu _y}(t)} \\ {{\mu _z}(t)} \end{array}} \right)=\,& \left( {\begin{array}{*{20}{c}} {\cos ({\omega _0}t)}&{\sin ({\omega _0}t)}&0 \\ {\cos ({\omega _0}t+\frac{\pi }{2})}&{\sin ({\omega _0}t+\frac{\pi }{2})}&0 \\ 0&0&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\mu _{x}^{0}} \\ {\mu _{y}^{0}} \\ {\mu _{z}^{0}} \end{array}} \right) \\ =\,& \left( {\begin{array}{*{20}{c}} {\cos ({\omega _0}t)}&{\sin ({\omega _0}t)}&0 \\ { - \sin ({\omega _0}t)}&{\cos ({\omega _0}t)}&0 \\ 0&0&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\mu _{x}^{0}} \\ {\mu _{y}^{0}} \\ {\mu _{z}^{0}} \end{array}} \right) \\ \end{aligned}$$
(12)

Appendix 2 Relaxation after excitation

Relaxation after excitation is related to microwave consumption [13]. If there are only two energy levels with quantum spin number ± 1/2, then at time t

$$\begin{aligned} \frac{{d{n_1}(t)}}{{dt}}=\,& - {n_1}(t){P_{12}}+{n_2}(t){P_{21}} \\ =\,& - {n_1}(t)({P_{12}}+{P_{21}})+[{n_1}(t)+{n_2}(t)]{P_{21}} \\ = & - {n_1}(t)({P_{12}}+{P_{21}})+N{P_{21}} \\ \end{aligned}$$
(13)
$$\begin{aligned} \frac{{d{n_2}(t)}}{{dt}}=\,& {n_1}(t){P_{12}} - {n_2}(t){P_{21}} \\ =\,& N{P_{12}} - {n_2}(t)({P_{12}}+{P_{21}}) \\ \end{aligned}$$
(14)
$$\begin{aligned} \frac{{d{n_1}(t)}}{{dt}} - \frac{{d{n_2}(t)}}{{dt}}=\,& \frac{d}{{dt}}[{n_1}(t) - {n_2}(t)] \\ =\,& N({P_{21}} - {P_{12}}) - [{n_1}(t) - {n_2}(t)]({P_{12}}+{P_{21}}) \\ \end{aligned}$$
(15)

n1 and n2 are the number of magnetic moments in levels 1 and 2, respectively. P12 and P21 are the probabilities of upward and downward transitions, respectively. At thermodynamic equilibrium

$$\begin{aligned} N({P_{21}} - {P_{12}})= & (n_{1}^{0} - n_{2}^{0})({P_{12}}+{P_{21}}) \\ = & (n_{1}^{0} - n_{2}^{0})\left( {2\frac{{{P_{12}}+{P_{21}}}}{2}} \right)=\Delta {n^0}2\overline {P} \\ \end{aligned}$$
(16)

Inserting Eq. 16 into Eq. 15

$$\frac{{d[{n_1}(t) - {n_2}(t)]}}{{dt}}=\frac{{d[\Delta n(t)]}}{{dt}}= - 2\overline {P} \left[ {\Delta n(t) - \Delta {n^0}} \right]$$
(17)

In the magnetic field of B0, the magnetization M is the resultant of N individual magnets processing around B0 in unit volume and it is directed along the magnetic field, or the z axis at thermodynamic equilibrium. Transitions will occur when a linear magnetic field B1 is applied perpendicular to the B0 field. A linearly oscillating frequency is equivalent to two opposing circularly oscillating frequencies. The result is that M tilts away from the z-axis and processes around the axis as implied by Eqs. 3739 and its component Mz(t) is proportional to the corresponding difference of population levels.

$$\frac{{d{M_z}}}{{dt}}= - 2\overline {P} \left[ {{M_z}(t) - M_{z}^{0}} \right]= - \frac{{{M_z}(t) - M_{z}^{0}}}{{{T_1}}}$$
(18)

T1 is referred to as longitudinal or spin–lattice relaxation time. After excitation, Mz(t) = Mz(0) at t = 0.

$${M_z}(t)=M_{z}^{0} - \left[ {M_{z}^{0} - {M_z}(0)} \right]\exp \left( { - \frac{t}{{{T_1}}}} \right)$$
(19)

At thermodynamic equilibrium, the transverse component of the magnetization vector is equal to zero (M = 0). With an excitation, a magnetization vector can be tilted away from z axis at a certain angle θ. In this case, there emerges a non-zero M on the plane perpendicular to the magnetic field B0 and the transverse or spin–spin relaxation time T2 is not equal to T1.

$$\frac{{d{M_ \bot }(t)}}{{dt}}= - \frac{{{M_ \bot }(t)}}{{{T_2}}}$$
(20)
$${M_ \bot }(t)={M_ \bot }(0)\exp \left( { - \frac{t}{{{T_2}}}} \right)$$
(21)

The terms relating to relaxation times contain information about the driven force and resistance to the oscillations of magnetic dipoles in microwaves.

Appendix 3 Absorption and dispersion signals

4.1 Appendix 3.1 Rotating frame of reference

Similar to Eq. 12, we obtain Eq. 22 for clockwise rotation if the exciting frequency is ω.

$$\begin{aligned} \left( {\begin{array}{*{20}{c}} {{M_x}(t)} \\ {{M_y}(t)} \\ {{M_z}(t)} \end{array}} \right)=\,& \left( {\begin{array}{*{20}{c}} {\cos (\omega t)}&{ - \sin (\omega t)}&0 \\ {\cos \left( {\omega t - \frac{\pi }{2}} \right)}&{ - \sin \left( {\omega t - \frac{\pi }{2}} \right)}&0 \\ 0&0&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{M_x}(0)} \\ {{M_y}(0)} \\ {{M_z}(0)} \end{array}} \right) \\ =\,& \left( {\begin{array}{*{20}{c}} {\cos (\omega t)}&{ - \sin (\omega t)}&0 \\ {\sin (\omega t)}&{\cos (\omega t)}&0 \\ 0&0&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{M_x}(0)} \\ {{M_y}(0)} \\ {{M_z}(0)} \end{array}} \right) \\ \end{aligned}$$
(22)

Related to the induced Mx and My is the magnetic field B1.

$${\mathbf{B}_1}={B_{1,x}}\mathbf{i}+{B_{1,y}}\mathbf{j}$$
(23)

If a rotating coordinate system is defined as

$$\left( {\begin{array}{*{20}{c}} {{\mathbf{i}}'} \\ {{\mathbf{j}}'} \\ {{\mathbf{k}}'} \end{array}} \right)=\left( {\begin{array}{*{20}{c}} {\cos (\omega t)}&{ - \sin (\omega t)}&0 \\ {\sin (\omega t)}&{\cos (\omega t)}&0 \\ 0&0&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\mathbf{i}} \\ {\mathbf{j}} \\ {\mathbf{k}} \end{array}} \right)$$
(24)

i′, j′, k′ are unit vectors of the rotating system. i, j, k are unit vectors of the non-rotating coordinate system. The time derivatives of the unit directional vectors of rotating coordinate system can be expressed as Eq. 25 where ω = − ωk [3].

$$\left\{ {\begin{array}{l} {\frac{{d{\mathbf{i}}'}}{{dt}}={\mathbf{\omega }} \times {\mathbf{i}}'} \\ {\frac{{d{\mathbf{j}}'}}{{dt}}={\mathbf{\omega }} \times {\mathbf{j}}'} \\ {\frac{{d{\mathbf{k}}'}}{{dt}}={\mathbf{\omega }} \times {\mathbf{k}}'} \end{array}} \right.$$
(25)

Within the non-rotating coordinate system

$$\frac{{d\mathbf{M}(t)}}{{dt}}=\frac{{d{M_x}(t)}}{{dt}}\mathbf{i}+\frac{{d{M_y}(t)}}{{dt}}\mathbf{j}+\frac{{d{M_z}(t)}}{{dt}}\mathbf{k}$$
(26)

The rate of change of M(t) observed in the rotating coordinate system is denoted as \(\frac{{\partial \mathbf{M}(t)}}{{\partial t}}\) and

$$\frac{{\partial \mathbf{M}(t)}}{{\partial t}} \ne \frac{{d\mathbf{M}(t)}}{{dt}}=\frac{{d{\mathbf{M}_{rot}}(t)}}{{dt}}$$
(27)

where within the rotating coordinate system

$$\frac{{\partial {{\mathbf{M}}_{rot}}(t)}}{{\partial t}}=\frac{{d{M_{x'}}(t)}}{{dt}}{\mathbf{i}}'+\frac{{d{M_{y'}}(t)}}{{dt}}{\mathbf{j}}'+\frac{{d{M_{z'}}(t)}}{{dt}}{\mathbf{k}}'$$
(28)

and from Eq. 25

$$\frac{{d{\mathbf{M}_{rot}}(t)}}{{dt}}=\frac{{\partial {\mathbf{M}_{rot}}(t)}}{{\partial t}}+\varvec{\upomega} \times {\mathbf{M}_{rot}}(t)$$
(29)
$$\begin{aligned} \frac{{\partial {\mathbf{M}_{rot}}(t)}}{{\partial t}}=\,& \frac{{d{\mathbf{M}_{rot}}(t)}}{{dt}} - \omega \times {\mathbf{M}_{rot}}(t) \\ =\,& \gamma {\mathbf{M}_{rot}}(t) \times ({B_{1,x'}}\mathbf{i}'+{B_{1,y'}}\mathbf{j}'+{B_0}\mathbf{k}')+{\mathbf{M}_{rot}}(t) \times \varvec{\upomega} \\ =\,& \gamma {\mathbf{M}_{rot}}(t) \times \left( {{\mathbf{B}_{rot}}+\frac{\omega }{\gamma }} \right)=\gamma {\mathbf{M}_{rot}}(t) \times {\mathbf{B}_{eff}} \\ \end{aligned}$$
(30)

From Eqs. 23 and 24 we obtain Eq. 31.

$$\left( {\begin{array}{*{20}{c}} {{B_{1,x'}}} \\ {{B_{1,y'}}} \end{array}} \right)=\left( {\begin{array}{*{20}{c}} {\cos (\omega t)}&{ - \sin (\omega t)} \\ {\sin (\omega t)}&{\cos (\omega t)} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{B_{1,x}}} \\ {{B_{1,y}}} \end{array}} \right)$$
(31)

Given that

$${{\mathbf{B}}_1}\left( t \right)={B_1}\cos (\omega t){\mathbf{i}} - {B_1}\sin (\omega t){\mathbf{j}}={B_{1,x}}{\mathbf{i}} - {B_{1,y}}{\mathbf{j}}$$
(32)
$$\left( {\begin{array}{*{20}{c}} {{B_{1,x'}}} \\ {{B_{1,y'}}} \end{array}} \right)=\left( {\begin{array}{*{20}{c}} {\cos (\omega t)}&{ - \sin (\omega t)} \\ {\sin (\omega t)}&{\cos (\omega t)} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{B_1}\cos (\omega t)} \\ { - {B_1}\sin (\omega t)} \end{array}} \right)=\left( {\begin{array}{*{20}{c}} {{B_1}} \\ 0 \end{array}} \right)$$
(33)

A linearly oscillating frequency is equivalent to two circularly oscillating frequencies.

4.2 Appendix 3.2 The Bloch equation

Summarizing from Eqs. 8, 18, and 20, the Bloch equations are obtained as Eqs. 34 and 35.

$$\frac{{d{\mathbf{M}}(t)}}{{dt}}=\gamma {\mathbf{{\rm M}}}(t) \times {\mathbf{B}} - \frac{{{M_x}(t){\mathbf{i}}+{M_y}(t){\mathbf{j}}}}{{{T_2}}} - \frac{{{M_z}(t) - M_{z}^{0}}}{{{T_1}}}{\mathbf{k}}$$
(34)
$$\frac{{\partial {{\mathbf{M}}_{rot}}(t)}}{{\partial t}}=\gamma {{\mathbf{M}}_{rot}}(t) \times {{\mathbf{B}}_{eff}} - \frac{{{M_{x'}}(t){\mathbf{i}}'+{M_{y'}}(t){\mathbf{j}}'}}{{{T_2}}} - \frac{{{M_{z'}}(t) - M_{z}^{0}}}{{{T_1}}}{\mathbf{k}}'$$
(35)

4.3 Appendix 3.3 Complex susceptibility

From Eqs. 32 and 34 we obtain Eqs. 3639.

$$\mathbf{M}(t) \times \mathbf{B}=\left| {\begin{array}{*{20}{c}} \mathbf{i}&\mathbf{j}&\mathbf{k} \\ {{M_x}(t)}&{{M_y}(t)}&{{M_z}(t)} \\ {{B_1}\cos (\omega t)}&{ - {B_1}\sin (\omega t)}&{{B_0}} \end{array}} \right|$$
(36)
$$\frac{{d{M_x}(t)}}{{dt}}=\gamma {M_y}(t){B_0}+\gamma {M_z}(t){B_1}\sin (\omega t) - \frac{{{M_x}(t)}}{{{T_2}}}$$
(37)
$$\frac{{d{M_y}(t)}}{{dt}}= - \gamma {M_x}(t){B_0}+\gamma {M_z}(t){B_1}\cos (\omega t) - \frac{{{M_y}(t)}}{{{T_2}}}$$
(38)
$$\frac{{d{M_z}(t)}}{{dt}}= - \gamma {M_x}(t){B_1}\sin (\omega t) - \gamma {M_y}(t){B_1}\cos (\omega t) - \frac{{{M_z}(t) - M_{z}^{0}}}{{{T_1}}}$$
(39)

From Eqs. 22 and 24

$${M_{x'}}(t)={M_x}(t)\cos (\omega t) - {M_y}(t)\sin (\omega t)$$
(40)
$$\begin{aligned} {M_{y'}}(t) =\,& {M_x}(t)\cos \left( {\omega t \pm \frac{\pi }{2}} \right)+{M_y}(t)\sin \left( {\omega t \pm \frac{\pi }{2}} \right) \\ =\,& \pm \left[ {{M_x}(t)\sin (\omega t)+{M_y}(t)\cos (\omega t)} \right] \\ \end{aligned}$$
(41)

The negative sign in Eq. 41 is reasonable [13] because

$${M_{y'}}(t)=\frac{1}{{\gamma {B_0}}}\frac{{d{M_{x'}}(t)}}{{dt}}$$
(42)

In other words, Mx(t) = Mx′(t)exp(− t/T2) and My(t) = My′(t)exp(− t/T2) are solutions for Eqs. 37 and 38 after the excitation or when B1 = 0. In fact, a solution for a differential equation multiplied by an arbitrary constant is still a solution to the equation. From Eqs. 25, 29, 3741 we obtain Eqs. 4345.

(43)
$$\begin{aligned} \frac{{d{M_{y'}}(t)}}{{dt}}=\,& \frac{{d{M_x}(t)}}{{dt}}\sin (\omega t)+\frac{{d{M_y}(t)}}{{dt}}\cos (\omega t) \\ + & \omega [{M_x}(t)\cos (\omega t) - {M_y}(t)\sin (\omega t)] \\ =\,& \left[ {\frac{{d{M_{y'}}(t)}}{{dt}}{\mathbf{j}}' - {\mathbf{\omega }} \times {M_{x'}}(t){\mathbf{i}}'} \right] \cdot {\mathbf{j}}' \\ =\,& \left[ {\gamma {M_y}(t){B_0}+\gamma {M_z}(t){B_{\text{1}}}\sin (\omega t) - \frac{{{M_x}(t)}}{{{T_2}}}} \right]\sin (\omega t) \\ + & \left[ { - \gamma {M_x}(t){B_0}+\gamma {M_z}(t){B_{\text{1}}}\cos (\omega t) - \frac{{{M_y}(t)}}{{{T_2}}}} \right]\cos (\omega t)+\omega {M_{x'}}(t) \\ =\,& (\omega - {\omega _0}){M_{x'}}(t) - \frac{{{M_{y'}}(t)}}{{{T_2}}}+\gamma {B_{\text{1}}}{M_z}(t) \\ \end{aligned}$$
(44)
$$\begin{aligned} \frac{{d{M_{z'}}(t)}}{{dt}}=\,& \frac{{d{M_z}(t)}}{{dt}} \\ =\,& \left[ {\frac{{d{M_{z'}}(t)}}{{dt}}\mathbf{k}' - \varvec{\upomega} \times {M_{x'}}(t)\mathbf{k}'} \right] \cdot \mathbf{k}' \\ =\,& \gamma {M_x}(t){B_y} - \gamma {M_y}(t){B_x} - \frac{{{M_z}(t) - M_{z}^{0}}}{{{T_1}}} \\ =\,& - \gamma {M_x}(t){B_1}\sin (\omega t) - \gamma {M_y}(t){B_1}\cos (\omega t) - \frac{{{M_z}(t) - M_{z}^{0}}}{{{T_1}}} \\ =\,& - \gamma {B_1}{M_{y'}}(t) - \frac{{{M_z}(t) - M_{z}^{0}}}{{{T_1}}} \\ \end{aligned}$$
(45)

Mx′(t) = M0cos(ω − ω0)exp(− t/T2) and My′(t) = M0sin(ω − ω0)exp(− t/T2) are solutions for Eqs. 43 and 44 when the excitation is finished or B1 = 0. The solution to the differential equation concerning electric dipole given in Ref. [13] relates to the alternating electric field and the complex polarizability α is reproduced as Eq. 46.

$$\alpha =\frac{{{e^2}m(\omega _{0}^{2} - {\omega ^2})}}{{{m^2}{{(\omega _{0}^{2} - {\omega ^2})}^2}+4{{(\eta ')}^2}{\omega ^2}}} - j\frac{{2{e^2}\eta '\omega }}{{{m^2}{{(\omega _{0}^{2} - {\omega ^2})}^2}+4{{(\eta ')}^2}{\omega ^2}}}$$
(46)

η′ in Eq. 46 is the resistance to the movement of the electron and defined in Ref. [13] as η′ = mη. m and e are the mass and charge of an electron, respectively. Similarly, the general solution to Eqs. 4345 relates magnetization to alternating magnetic field and the complex susceptibility is thus obtained. When the rate of change of frequency \(\frac{{d\omega }}{{dt}}\) or the passage of time through the resonance region τ compared with the rate of spin–spin relaxation satisfies

$$\begin{array}{*{20}{l}} {\frac{{d\omega }}{{dt}}<<\frac{1}{{T_{2}^{2}}};}&{and}&{\tau>>{T_2}} \end{array}$$
(47)

The components of magnetization slowly change over time and all three of the time variables in Eqs. 4345 are small and can be set equal to zero.

$$\left\{ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_2}}}{M_{x'}}(t)+({\omega _0} - \omega ){M_{y'}}+0 \cdot {M_z}(t)=0} \\ {(\omega - {\omega _0}){M_{x'}}(t) - \frac{1}{{{T_2}}}{M_{y'}}(t)+\gamma {B_1}{M_z}(t)=0} \\ {0 \cdot {M_{x'}}(t) - \gamma {B_1}{M_{y'}}(t) - \frac{1}{{{T_1}}}{M_z}(t)= - \frac{{M_{z}^{0}}}{{{T_1}}}} \end{array}} \right.$$
(48)

The solution of Eq. 48 is

$$\left\{ {\begin{array}{*{20}{c}} {{M_{x'}}(t)=M_{z}^{0}\frac{{\gamma {B_1}T_{2}^{2}({\omega _0} - \omega )}}{{1+T_{2}^{2}{{({\omega _0} - \omega )}^2}+{\gamma ^2}B_{1}^{2}{T_1}{T_2}}}} \\ {{M_{y'}}(t)=M_{z}^{0}\frac{{\gamma {B_1}{T_2}}}{{1+T_{2}^{2}{{({\omega _0} - \omega )}^2}+{\gamma ^2}B_{1}^{2}{T_1}{T_2}}}} \\ {{M_z}(t)=M_{z}^{0}\frac{{1+T_{2}^{2}{{({\omega _0} - \omega )}^2}}}{{1+T_{2}^{2}{{({\omega _0} - \omega )}^2}+{\gamma ^2}B_{1}^{2}{T_1}{T_2}}}} \end{array}} \right.$$
(49)

The rotating field H1 is a linearly polarized field along the x axis and represented by 2H1cos(ωt). The response of nuclear moments to excitation with this radiation can be described by complex susceptibility χ similar to Eq. 46.

$$\chi =\chi ^{\prime} - {\text{j}}\chi ^{\prime\prime}$$
(50)
$${M_{x'}}(t)=(2{H_1})\chi '={\chi _0}{H_0}\frac{{\mu\gamma T_{2}^{2}({\omega _0} - \omega )}}{{2[1+T_{2}^{2}{{({\omega _0} - \omega )}^2}+{\gamma ^2}B_{1}^{2}{T_1}{T_2}]}}2{H_1}$$
(51)
$${M_{y'}}(t)=(2{H_1})\chi ^{\prime\prime}=\frac{{{\mu\chi _0}{\omega _0}{T_2}}}{{2[1+T_{2}^{2}{{({\omega _0} - \omega )}^2}+{\gamma ^2}B_{1}^{2}{T_1}{T_2}]}}2{H_1}$$
(52)

The real part of the susceptibility produces the positive or negative dispersion signal while the imaginary part of the susceptibility gives rise to the positive or negative absorption signal [66,67,68].

Appendix 4 Examples of absorptions from magnetic resonance

Absorption from non-resonance forced oscillation of dipole moment, related to the background of a resonance absorption spectrum, is weak and frequency insensitive [13]. There might be a peak with reflection loss RM = − ∞ dB within very narrow frequency range when the microwave frequency is increased from a region where |εr| > |µr| to a region where |µr| > |εr|. The absorption from resonance is strong and narrow which can be easily missed in the data collection process when measured with a VNA [26]. Some examples of resonance absorption are presented with the NMR spectrum.

5.1 Appendix 4.1 The two-spin system AX

A single phased material is uniform and the microwave transmission-line theory can be applied [26]. However, the environments of a uniformed material may differ locally. The local resonance magnetic field H0 experienced by two protons may resonate at different fields of HA0 and HX0, respectively, resulting in two absorption peaks at different positions. The two-spin system is denoted by AX when the environments of two protons A and X are completely different. If coupling between the two protons is ignored, there are only two resonance frequencies among four possible states as shown by Fig. 7a since the selection rule about the total spin quantum number for the system is ΔSz = ± 1. The transitions of ΔSz = 0 and ± 2 are forbidden.

Fig. 7
figure 7

The states and the absorption peaks for a two-spin system AX. νA and νX are resonance frequencies for protons A and X, respectively, when the coupling constant JAX is zero (a). (b) is for the case where the coupling constant is non-zero. α and β are spin wave functions with quantum number sz of ±1/2, respectively

The energy of the four states of the AX system are given by Eqs. 53 and 54 [69].

$$\begin{aligned} {E_{{\alpha _A}{\alpha _X}}}=\,& \left( {\begin{array}{*{20}{c}} {{\alpha _A}}&{{\alpha _X}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\widehat {H}}&0 \\ 0&{\widehat {H}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{\alpha _A}} \\ {{\alpha _X}} \end{array}} \right) \\ =\,& \left( {\begin{array}{*{20}{c}} {{\alpha _A}}&{{\alpha _X}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}\gamma \hbar {H_{A0}}}&0 \\ 0&{\frac{1}{2}\gamma \hbar {H_{X0}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{\alpha _A}} \\ {{\alpha _X}} \end{array}} \right) \\ =\,& \left( {\begin{array}{*{20}{c}} {{\alpha _A}}&{{\alpha _X}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}h{\nu _A}}&0 \\ 0&{\frac{1}{2}h{\nu _X}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{\alpha _A}} \\ {{\alpha _X}} \end{array}} \right) \\ =\,& \frac{h}{2}({\nu _A}+{\nu _X}) \\ \end{aligned}$$
(53)

and

$$\begin{aligned} {E_{{\alpha _A}{\beta _X}}} =\,& \frac{h}{2}({\nu _A} - {\nu _X}) \\ {E_{{\beta _A}{\alpha _X}}}=\,& - \frac{h}{2}({\nu _A} - {\nu _X}) \\ {E_{{\beta _A}{\beta _X}}} =\,& - \frac{h}{2}({\nu _A}+{\nu _X}) \\ \end{aligned}$$
(54)

\(\widehat {H}\)is the Hamiltonian operator. If proton A is affected by the magnetic field of the magnetic moment of X and vice versa, there will be coupling among the two protons. The energies of the states of αAαX and βAβX are raised by JAX/4 and those of βAαX and αAβX are lowered by JAX/4 as calculated by Eqs. 55 and 56 for the energy corrections from the coupling. The two absorption peaks originally at νA and νX are now split into four peaks as shown by Fig. 7b.

$$\begin{aligned} \Delta E_{{\alpha _{A} \alpha _{X} }} =\,& \;\left\langle {\alpha _{A} \alpha _{X} |J_{{AX}} \widehat{{s_{A} }}\widehat{{s_{X} }}|\alpha _{A} \alpha _{X} } \right\rangle \\ =\,& J_{{AX}} \left\langle {\alpha _{A} \alpha _{X} |\widehat{{s_{{x,A}} }}\widehat{{s_{{x,X}} }} + \widehat{{s_{{y,A}} }}\widehat{{s_{{y,X}} }} + \widehat{{s_{{z,A}} }}\widehat{{s_{{z,X}} }}|\alpha _{A} \alpha _{X} } \right\rangle \\ =\,& J_{{AX}} \left( {\frac{1}{4}\left\langle {\alpha _{A} \alpha _{X} |\beta _{A} \beta _{X} } \right\rangle - \frac{1}{4}\left\langle {\alpha _{A} \alpha _{X} |\beta _{A} \beta _{X} } \right\rangle + \frac{1}{4}\left\langle {\alpha _{A} \alpha _{X} |\alpha _{A} \alpha _{X} } \right\rangle } \right) \\ =\,& \frac{1}{4}J_{{AX}} \\ \end{aligned}$$
(55)

and

$$\begin{aligned} \Delta {E_{{\alpha _A}{\beta _X}}}=\,& - \frac{1}{4}{J_{AX}} \\ \Delta {E_{{\beta _A}{\alpha _X}}}=\,& - \frac{1}{4}{J_{AX}} \\ \Delta {E_{{\beta _A}{\beta _X}}}=\,& \frac{1}{4}{J_{AX}} \\ \end{aligned}$$
(56)

The behavior of the spin operators is demonstrated by Eqs. 5759. The constant h/2π from the operations has been absorbed into the coupling constant.

$$\begin{gathered} \widehat {{{s_z}}}\alpha =\widehat {{{s_z}}}\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 1&0 \\ 0&{ - 1} \end{array}} \right)\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\alpha \hfill \\ \widehat {{{s_z}}}\beta =\widehat {{{s_z}}}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 1&0 \\ 0&{ - 1} \end{array}} \right)\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)= - \frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)= - \frac{\hbar }{2}\beta \hfill \\ \end{gathered}$$
(57)
$$\begin{gathered} \widehat {{{s_x}}}\alpha =\widehat {{{s_x}}}\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 0&1 \\ 1&0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)=\frac{\hbar }{2}\beta \hfill \\ \widehat {{{s_x}}}\beta =\widehat {{{s_x}}}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 0&1 \\ 1&0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\alpha \hfill \\ \end{gathered}$$
(58)
$$\begin{gathered} \widehat {{{s_y}}}\alpha =\widehat {{{s_y}}}\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 0&{ - j} \\ j&0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)=\frac{\hbar }{2}j\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)=\frac{\hbar }{2}j\beta \hfill \\ \widehat {{{s_y}}}\beta =\widehat {{{s_y}}}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)=\frac{\hbar }{2}\left( {\begin{array}{*{20}{c}} 0&{ - j} \\ j&0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right)= - \frac{\hbar }{2}j\left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right)= - \frac{\hbar }{2}j\alpha \hfill \\ \end{gathered}$$
(59)

5.2 Appendix 4.2 The two-spin system AA

Another extreme is the AA spin system where the two protons are equivalent and thus the two states αA1βA2 and βA1αA2 must be combined as shown by Fig. 8 [70, 71].

Fig. 8
figure 8

The states and the absorption peaks for a two-spin system AA. In (a) the coupling constant JAA is zero while in (b) the coupling constant is non-zero

When the coupling from the two protons is ignored, the energies for the four states are

$$\begin{gathered} {E_{{\alpha _{A1}}{\alpha _{A2}}}}=\left( {\begin{array}{*{20}{c}} {{\alpha _{A1}}}&{{\alpha _{A2}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\frac{1}{2}h{\nu _A}}&0 \\ 0&{\frac{1}{2}h{\nu _A}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{\alpha _{A1}}} \\ {{\alpha _{A2}}} \end{array}} \right)=h{\nu _A} \hfill \\ {E_{({\alpha _{A1}}{\beta _{A2}}{+_{\beta A1}}{\alpha _{A2}})/\sqrt 2 }}=0 \hfill \\ {E_{({\alpha _{A1}}{\beta _{A2}}{ - _{\beta A1}}{\alpha _{A2}})/\sqrt 2 }}=0 \hfill \\ {E_{{\beta _{A1}}{\beta _{A2}}}}= - h{\nu _A} \hfill \\ \end{gathered}$$
(60)

The transitions are allowed only between wave functions of the same symmetry and forbidden between symmetric and antisymmetric wave functions. Although there are four spin states, only two transitions occur at the same position and the result is a singlet at νA as shown by Fig. 8a. The transition probability

$$\begin{gathered} \left\langle {\alpha _{{A1}} \alpha _{{A2}} |\widehat{{S_{ + } }}|(\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} ){\text{/}}\sqrt 2 } \right\rangle ^{2} \hfill \\ = \frac{1}{2}\left\langle {\alpha _{{A1}} \alpha _{{A2}} |\widehat{{s_{{ + ,A1}} }} + \widehat{{s_{{ + ,A2}} }}|(\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} )} \right\rangle ^{2} \hfill \\ = \frac{1}{2}\left\langle {\alpha _{{A1}} \alpha _{{A2}} |(\alpha _{{A1}} \alpha _{{A2}} + \alpha _{{A1}} \alpha _{{A2}} )} \right\rangle ^{2} = 2 \hfill \\ \end{gathered}$$
(61)
$$\begin{gathered} \left\langle {(\alpha _{{A1}} \beta _{{A2}} - \beta _{{A1}} \alpha _{{A2}} )/\sqrt 2 |\widehat{{S_{ + } }}|\beta _{{A1}} \beta _{{A2}} } \right\rangle ^{2} \hfill \\ = \frac{1}{2}\left\langle {(\alpha _{{A1}} \beta _{{A2}} - \beta _{{A1}} \alpha _{{A2}} )|(\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} )} \right\rangle ^{2} = 0 \hfill \\ \end{gathered}$$
(62)

where S+ is the raising operator defined by

$$\begin{gathered} \widehat {{{s_+}}}|{s_z}\ge(\widehat {{{s_x}}}+j\widehat {{{s_y}}})|{s_z}\ge\sqrt {(s - {s_z})(s+{s_z}+1)} |{s_z}+1> \hfill \\ \widehat {{{s_+}}}\beta =\alpha \hfill \\ \widehat {{{s_+}}}\alpha =0 \hfill \\ \end{gathered}$$
(63)

When JAA ≠ 0, the corrections for the energies of the four spin states are

$$\begin{aligned} \Delta E_{{(\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} )/\sqrt 2 }} =\,& \frac{1}{2}\left\langle {\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} |J_{{AA}} \widehat{{s_{{A1}} }}\widehat{{s_{{A2}} }}|\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} } \right\rangle \\ =\,& \frac{1}{2}J_{{AA}} \left\langle {\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} |\widehat{{s_{{x,A1}} }}\widehat{{s_{{x,A2}} }} + \widehat{{s_{{y,A1}} }}\widehat{{s_{{y,A2}} }} + \widehat{{s_{{z,A1}} }}\widehat{{s_{{z,A2}} }}|\alpha _{{A1}} \beta _{{A2}} + \beta _{{A1}} \alpha _{{A2}} } \right\rangle \\ =\,& \frac{1}{2}J_{{AA}} \left( {\frac{1}{2} + \frac{1}{2} - \frac{1}{2}} \right) = \frac{1}{4}J_{{AA}} \\ \end{aligned}$$
(64)
$$\begin{gathered} \Delta {E_{({\alpha _{A1}}{\beta _{A2}} - {\beta _{A1}}{\alpha _{A2}})/\sqrt 2 }}= - \frac{3}{4}{J_{AA}} \hfill \\ \Delta {E_{{\alpha _{A1}}{\alpha _{A2}}}}=\frac{1}{4}{J_{AA}} \hfill \\ \Delta {E_{{\beta _{A1}}{\beta _{A2}}}}=\frac{1}{4}{J_{AA}} \hfill \\ \end{gathered}$$
(65)

As shown by Fig. 8b, all the symmetric states are raised in energy by JAA/4, and the asymmetric state is lowered by − 3JAA/4. The transitions between symmetric and antisymmetric states are forbidden, and each symmetric state is perturbed by the same amount, the two transitions occur at the same position, and the result is a singlet at νA. There is no split among equivalent protons.

5.3 Appendix 4.3 The two-spin system AB

The most complex is that the two protons are similar in AB system. The combination of αAβB and βAαB

$$\Phi ({\text{A}},{\text{B}})={c_1}{\alpha _A}{\beta _B}+{c_2}{\beta _A}{\alpha _B}$$
(66)

can be determined by Eq. 67 from Eqs. 54 and 56.

$$\left( {\begin{array}{*{20}{c}} {\frac{1}{2}({\nu _A} - {\nu _B}) - \frac{1}{4}{J_{AB}}}&{\frac{1}{2}{J_{AB}}} \\ {\frac{1}{2}{J_{AB}}}&{ - \frac{1}{2}({\nu _A} - {\nu _B}) - \frac{1}{4}{J_{AB}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{c_1}} \\ {{c_2}} \end{array}} \right)={E_{\alpha \beta }}\left( {\begin{array}{*{20}{c}} {{c_1}} \\ {{c_2}} \end{array}} \right)$$
(67)
$$\begin{gathered} {\left( {{E_{\alpha \beta }}+\frac{1}{4}{J_{AB}}} \right)^2}=\frac{1}{4}[{({\nu _A} - {\nu _B})^2}+J_{{AB}}^{2}] \hfill \\ {E_{\alpha \beta }}= \pm \frac{1}{2}\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - \frac{1}{4}{J_{AB}} \hfill \\ \end{gathered}$$
(68)

while

$$\begin{gathered} {E_{\alpha \alpha }}=\frac{1}{2}({\nu _A}+{\nu _B})+\frac{1}{4}{J_{AB}} \hfill \\ {E_{\beta \beta }}= - \frac{1}{2}({\nu _A}+{\nu _B})+\frac{1}{4}{J_{AB}} \hfill \\ \end{gathered}$$
(69)

Figure 9a represents an AB system when the coupling constant JAB = 0. As indicated by the dashed arrows, Eββ = − (νA + νB)/2 and Eαβ+ = (νA − νB)/2. Thus, the transition from βAβB to αAβB+ occurs at νA. And similarly, the transition from βAβB to αAβB occurs at νB. Figures 7a and 9a are different representations of the same result. There are only two absorption peaks among the four states. Figure 9b is an intermediate representation. As indicated by the dashed arrows, the two states αAβB+ and αAβB are raised and lowered respectively in energy by D/2 from those shown by Fig. 9a. D is defined as

$$\frac{1}{2}D=\frac{1}{2}\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - \frac{1}{2}({\nu _A} - {\nu _B})$$
(70)

and

$$({\nu _A} - {\nu _B})+D=\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}}$$
(71)
Fig. 9
figure 9

The states and the absorption peaks for a two-spin system AB. aJAB = 0; b an intermediate representation; c a full representation

The changes in these two states only shift the absorption peaks and do not split them. Figure 9c is a full representation of Eqs. 68 and 69. It evolves from Fig. 9b indicated by the dashed arrows that the two middle states αAβB+ and αAβB are lowered in energy by JAB/4 and the two outer states βAβB and αAαB are raised in energy by JAB/4, resulting four absorption peaks.

When νA − νB > > JAB then \(\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}}\) in Eq. 68 equals νA − νB and the AB spin system becomes the AX spin system. When νA = νB, the AB spin system becomes the AA spin system.

The transition probability

$$\begin{gathered} \left\langle {(c_{1}^{ + } \alpha _{A} \beta _{B} + c_{2}^{ + } \beta _{A} \alpha _{B} )|\widehat{{S_{ + } }}|\beta _{A} \beta _{B} } \right\rangle ^{2} \hfill \\ = \left\langle {(c_{1}^{ + } \alpha _{A} \beta _{B} + c_{2}^{ + } \beta _{A} \alpha _{B} )|\widehat{{s_{{ + ,A1}} }} + \widehat{{s_{{ + ,B}} }}|\beta _{A} \beta _{B} } \right\rangle ^{2} \hfill \\ = \left\langle {(c_{1}^{ + } \alpha _{A} \beta _{B} + c_{2}^{ + } \beta _{A} \alpha _{B} )|(\alpha _{A} \beta _{B} + \beta _{A} \alpha _{B} )} \right\rangle ^{2} \hfill \\ = (c_{1}^{ + } + c_{2}^{ + } )^{2} \hfill \\ \end{gathered}$$
(72)
$$\begin{gathered} \left\langle {\alpha _{A} \alpha _{B} |\widehat{{S_{ + } }}|(c_{1}^{ - } \alpha _{A} \beta _{B} + c_{2}^{ - } \beta _{A} \alpha _{B} )} \right\rangle ^{2} \hfill \\ = \left\langle {\alpha _{A} \alpha _{B} |(c_{1}^{ - } \alpha _{A} \alpha _{B} + c_{2}^{ - } \alpha _{A} \alpha _{B} )} \right\rangle ^{2} \hfill \\ = (c_{1}^{ - } + c_{2}^{ - } )^{2} \hfill \\ \end{gathered}$$
(73)

The coefficients of the combined functions can be obtained from Eqs. 67 and 68.

$$\left[ {\frac{1}{2}({\nu _A} - {\nu _B}) - \frac{1}{4}{J_{AB}} - {E_{\alpha \beta }}} \right]{c_1}+\frac{1}{2}{J_{AB}}{c_2}=0$$
(74)
$$\begin{aligned} \frac{{{c_2}}}{{{c_1}}}=\,& - \frac{{\left[ {\frac{1}{2}({\nu _A} - {\nu _B}) - \frac{1}{4}{J_{AB}} - {E_{\alpha \beta }}} \right]}}{{\frac{1}{2}{J_{AB}}}} \\ =\,& \frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B}) \pm \sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right] \\ \end{aligned}$$
(75)

The ratio of the intensities or transition probabilities are

$$\begin{aligned} \frac{{{{({c_{1,\alpha {\beta ^+}}}+{c_{2,\alpha {\beta ^+}}})}^2}}}{{{{({c_{1,\alpha {\beta ^ - }}}+{c_{2,\alpha {\beta ^ - }}})}^2}}}=\,& {\left( {\frac{{{c_{1,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^ - }}}}}} \right)^2}\frac{{{{\left( {1+\frac{{{c_{2,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^+}}}}}} \right)}^2}}}{{{{\left( {1+\frac{{{c_{2,\alpha {\beta ^ - }}}}}{{{c_{1,\alpha {\beta ^ - }}}}}} \right)}^2}}}={\left( {\frac{{{c_{1,\alpha {\beta ^+}}}}}{{{c_{2,\alpha {\beta ^+}}}}}} \right)^2}\frac{{{{\left( {1+\frac{{{c_{2,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^+}}}}}} \right)}^2}}}{{{{\left( {1+\frac{{{c_{2,\alpha {\beta ^ - }}}}}{{{c_{1,\alpha {\beta ^ - }}}}}} \right)}^2}}} \\ =\,& \frac{{{{\left\{ {1+\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}}{{{{\left\{ {\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}{{\left\{ {1 - \frac{1}{{{J_{AB}}}}\left[ {({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}} \\ =\,& \frac{{{{\left\{ {1+\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}}{{{{\left\{ {\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right] - 1} \right\}}^2}}} \\ =\,& \frac{{{{\left\{ {1+\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}}{{{{\left\{ {1 - \frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}} \\ =\,& \frac{{{{\left( {1+\frac{{{c_{2,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^+}}}}}} \right)}^2}}}{{{{\left( {1 - \frac{{{c_{2,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^+}}}}}} \right)}^2}}}=\frac{{{{({c_{1,\alpha {\beta ^+}}}+{c_{2,\alpha {\beta ^+}}})}^2}}}{{{{({c_{1,\alpha {\beta ^+}}} - {c_{2,\alpha {\beta ^+}}})}^2}}}=\frac{{{{({c_{1,\alpha {\beta ^+}}}+{c_{2,\alpha {\beta ^+}}})}^2}}}{{{{({c_{2,\alpha {\beta ^+}}} - {c_{1,\alpha {\beta ^+}}})}^2}}} \\ =\,& \frac{{{{\left( {{c_{1,\alpha {\beta ^+}}}+{c_{2,\alpha {\beta ^+}}}} \right)}^2}}}{{{{\left( {{c_{1,\alpha {\beta ^ - }}}+{c_{2,\alpha {\beta ^ - }}}} \right)}^2}}} \\ \end{aligned}$$
(76)
$$\begin{aligned} \frac{{{{\left( {1+\frac{{{c_{2,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^+}}}}}} \right)}^2}}}{{{{\left( {1 - \frac{{{c_{2,\alpha {\beta ^+}}}}}{{{c_{1,\alpha {\beta ^+}}}}}} \right)}^2}}}=\,& \frac{{{{\left\{ {1+\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}}{{{{\left\{ {1 - \frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}} \\ =\,& \frac{{1+{{\left\{ {\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}+\frac{2}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]}}{{1+{{\left\{ {\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2} - \frac{2}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]}} \\ =\,& \frac{{2J_{{AB}}^{2}+2{{({\nu _A} - {\nu _B})}^2} - 2({\nu _A} - {\nu _B})\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} +2{J_{AB}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]}}{{2J_{{AB}}^{2}+2{{({\nu _A} - {\nu _B})}^2} - 2({\nu _A} - {\nu _B})\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - 2{J_{AB}}\left[ { - ({\nu _A} - {\nu _B})+\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]}} \\ =\,& \,\frac{{{J_{AB}}[{J_{AB}} - ({\nu _A} - {\nu _B})]+{{({\nu _A} - {\nu _B})}^2} - \left[ {({\nu _A} - {\nu _B}) - {J_{AB}}]\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]}}{{{J_{AB}}[{J_{AB}}+({\nu _A} - {\nu _B})]+{{({\nu _A} - {\nu _B})}^2} - [({\nu _A} - {\nu _B})+{J_{AB}}]\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }} \\ =\,& \frac{{{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2} - J_{{AB}}^{2} - [({\nu _A} - {\nu _B}) - {J_{AB}}]\left[ {\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} +{J_{AB}}} \right]}}{{{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2} - J_{{AB}}^{2} - [({\nu _A} - {\nu _B})+{J_{AB}}]\left[ {\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - {J_{AB}}} \right]}} \\ =\,& \frac{{\left[ {\left( {\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - {J_{AB}}} \right) - ({\nu _A} - {\nu _B})+{J_{AB}}} \right]\left[ {\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} +{J_{AB}}} \right]}}{{\left[ {\left( {\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} +{J_{AB}}} \right) - ({\nu _A} - {\nu _B}) - {J_{AB}}} \right]\left[ {\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - {J_{AB}}} \right]}} \\ =\,& \frac{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} +{J_{AB}}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} - {J_{AB}}}}=\frac{{[({\nu _A} - {\nu _B})+D]+{J_{AB}}}}{{[({\nu _A} - {\nu _B})+D] - {J_{AB}}}} \\ \end{aligned}$$
(77)

[(νA − νB) + D] is defined by Eq. 71 and shown in Fig. 9c. Thus, the intensity ratio corresponds to the ratio of the distances between the outer and the inner absorption peaks [72]. The tough algebra in Eqs. 76 and 77 is considered to be elementary and is therefore often omitted for conciseness and clarity in presentations. However, to gain a real understanding, a rudimentary skill in algebra is vital.

The coefficients of the combined wave function in Eq. 66 can be calculated from Eqs. 74 and 78.

$$c_{1}^{2}+c_{2}^{2}=1$$
(78)
$$\frac{1}{{c_{1}^{2}}}=1+\frac{{c_{2}^{2}}}{{c_{1}^{2}}}=1+{\left\{ {\frac{1}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B}) \pm \sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}^2}$$
(79)
$$\begin{aligned} c_{1}^{2}=\,& \frac{{J_{{AB}}^{2}}}{{J_{{AB}}^{2}+{{\left\{ {\left[ { - ({\nu _A} - {\nu _B}) \pm \sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]} \right\}}^2}}} \\ =\,& \frac{{J_{{AB}}^{2}}}{{2J_{{AB}}^{2}+2{{({\nu _A} - {\nu _B})}^2} \mp 2({\nu _A} - {\nu _B})\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }} \\ =\,& \frac{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} \pm ({\nu _A} - {\nu _B})}}{{2\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }} \\ =\,& \frac{1}{2}(1 \pm \frac{{{\nu _A} - {\nu _B}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}) \\ \end{aligned}$$
(80)

Equation 81 is obtained from Eqs. 75 and 80.

$$\begin{aligned} {c_2}=\,& \frac{{{c_1}}}{{{J_{AB}}}}\left[ { - ({\nu _A} - {\nu _B}) \pm \sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right] \\ =\,& \sqrt {\frac{1}{2}\left( {1 \pm \frac{{{\nu _A} - {\nu _B}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}} \right)} \frac{{ - {J_{AB}}}}{{\left[ { - ({\nu _A} - {\nu _B}) \mp \sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} } \right]}} \\ =\,& \sqrt {\frac{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} \pm ({\nu _A} - {\nu _B})}}{{2\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}} \frac{{{J_{AB}}}}{{\left[ { \pm \sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} +({\nu _A} - {\nu _B})} \right]}} \\ =\,& \pm \sqrt {\frac{{J_{{AB}}^{2}}}{{2\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} [\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} \pm ({\nu _A} - {\nu _B})]}}} \\ =\,& \pm \sqrt {\frac{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} \mp ({\nu _A} - {\nu _B})}}{{2\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}} = \pm \sqrt {\frac{1}{2}\left( {1 \mp \frac{{{\nu _A} - {\nu _B}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}} \right)} \\ \end{aligned}$$
(81)

The same result as Eq. 77 can be obtained from Eqs. 80 and 81.

$$\begin{aligned} \frac{{{{({c_{1,\alpha {\beta ^+}}}+{c_{2,\alpha {\beta ^+}}})}^2}}}{{{{({c_{1,\alpha {\beta ^ - }}}+{c_{2,\alpha {\beta ^ - }}})}^2}}}=\,& \frac{{c_{{1,\alpha {\beta ^+}}}^{2}+c_{{2,\alpha {\beta ^+}}}^{2}+2{c_{1,\alpha {\beta ^+}}}{c_{2,\alpha {\beta ^+}}}}}{{c_{{1,\alpha {\beta ^ - }}}^{2}+c_{{2,\alpha {\beta ^ - }}}^{2}+2{c_{1,\alpha {\beta ^ - }}}{c_{2,\alpha {\beta ^ - }}}}} \\ =\,& \frac{{1+2{c_{1,\alpha {\beta ^+}}}{c_{2,\alpha {\beta ^+}}}}}{{1+2{c_{1,\alpha {\beta ^ - }}}{c_{2,\alpha {\beta ^ - }}}}}=\frac{{1+\frac{{{J_{AB}}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}}}{{1 - \frac{{{J_{AB}}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }}}} \\ =\,& \frac{{\frac{{({\nu _3} - {\nu _1})+({\nu _4} - {\nu _3})}}{{{\nu _3} - {\nu _1}}}}}{{\frac{{({\nu _3} - {\nu _1}) - ({\nu _2} - {\nu _1})}}{{{\nu _3} - {\nu _1}}}}}=\frac{{{\nu _4} - {\nu _1}}}{{{\nu _3} - {\nu _2}}} \\ \end{aligned}$$
(82)

Reducing the strength of B0 will reduce νA − νB while JAB is not affected. When νA − νB = \(\sqrt 3\)JAB, the distance between the inner absorption peaks is exactly JAB so that a quartet results with intensities 1:3:3:1 similar to a single resonance split by three equivalent protons. As B0 is further reduced so that νA approaches νB, the two inner absorption peaks approach each other, the outer peaks approach zero and the pattern becomes similar to a doublet with a small coupling constant. If νA = νB, the two inner peaks become one and the two out peaks have zero intensity. The two protons are thus chemically equivalent so that they have the same chemical shift and no splitting is observed. As shown from Fig. 9c Eq. 83 is implied by Eq. 71.

$$\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} =({\nu _A} - {\nu _B})+D={\nu _3} - {\nu _1}$$
(83)

From Eq. 83 we obtain Eq. 84. From Eq. 84 we obtain Eq. 85 which is implied by Fig. 10c for the relationship of νA − νB, ν4 − ν1, and ν3 − ν2.

Fig. 10
figure 10

The graphical representation for the relationship between νA − νB, ν4 − ν1, and ν3 − ν2 as shown by Eq. 85

$$\begin{aligned} {({\nu _A} - {\nu _B})^2}=\,& {({\nu _3} - {\nu _1})^2} - J_{{AB}}^{2} \\ =\,& {({\nu _3} - {\nu _1})^2} - {({\nu _2} - {\nu _1})^2} \\ =\,& [({\nu _3} - {\nu _1})+({\nu _2} - {\nu _1})][({\nu _3} - {\nu _1}) - ({\nu _2} - {\nu _1})] \\ =\,& [({\nu _4} - {\nu _2})+({\nu _2} - {\nu _1})][({\nu _3} - {\nu _1}) - ({\nu _2} - {\nu _1})] \\ =\,& ({\nu _4} - {\nu _1})({\nu _3} - {\nu _2}) \\ \end{aligned}$$
(84)
$$\frac{{{\nu _4} - {\nu _1}}}{{{\nu _A} - {\nu _B}}}=\frac{{{\nu _A} - {\nu _B}}}{{{\nu _3} - {\nu _2}}}$$
(85)

Equation 87 can be obtained from Eqs. 78 and 86 [73].

$${\sin ^2}u+{\cos ^2}u=1$$
(86)
$$\begin{gathered} {c_{1,\alpha {\beta ^+}}}= - {c_{2,\alpha {\beta ^ - }}}=\sqrt {\frac{{1 - \cos 2u}}{2}} \hfill \\ {c_{2,\alpha {\beta ^+}}}={c_{1,\alpha {\beta ^ - }}}=\sqrt {\frac{{1+\cos 2u}}{2}} \hfill \\ \sin (2u)=2\sin u\cos u=\frac{{{J_{AB}}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }} \hfill \\ \cos (2u)=\frac{{{\nu _A} - {\nu _B}}}{{\sqrt {{{({\nu _A} - {\nu _B})}^2}+J_{{AB}}^{2}} }} \hfill \\ \end{gathered}$$
(87)

Summary

Academic misconduct has been becoming a serious problem nowadays. Mistakes appeared in publications are also becoming more severe. The two are related because less and less attention is stressed on the rudiments of science in research community. The wrong method discussed in this work has been used by many researchers and the practice has lasted so long. There are so many works published with the method [4, 17, 21,22,23,24,25, 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] and such works still appear [52,53,54,55,56,57,58,59,60,61,62] after we first pointed out the problem in November 2017 [13]. Conclusions cannot be sensible if the method used to obtain them is wrong. “Some scientists wondered how a questionable line of research persisted for so long.” [64] One way to find mistakes promptly before or after their publications is encouraging a keen interest among researchers in fundamental principles instead of relying heavily on equipment.

Because less attention has been paid on the rudiments, the problem pointed out in this work is not unique. The environments of protons are vital for nuclear magnetic resonance as shown by Appendix 4. The environment of lattice node is also a basic concept used in the field of crystallography which is vital to material research [74]. However, there are problems about the issue in recent publications. By confusing the concepts of lattice node and Wyckoff site in crystal, it is misleadingly claimed that “it is obviously simply impossible to have different environments around two physically distinct but symmetrically equivalent atoms.” [75] In fact, the environments of two chiral positions connected by mirror or inverse operation are different. Diamond lattice [75] is a commonly used phrase [76,77,78,79,80,81,82] to distinguish different forms of cF lattice such as table salt, diamond, and spinel MgAl2O4. The phrase can be conveniently used for describing structures such as MgCu2 [76] and MgAl2O4 where Mg occupies the points indicated in the “diamond lattice.” There are only 14 Bravais lattices. Thus, not every point in the cell of diamond lattice is a lattice node. In the unit cell of primitive diamond lattice there are two carbon atoms but they are represented by only one lattice node. Relative to translation operation, all the nodes (but not necessarily all the points or atoms) in a lattice have the same environment. The environments of the two carbon atoms in the primitive unit cell of diamond are different even though they are connected by symmetry operations. The same environment for all the lattice nodes in a lattice is an essential principle in the long-established Miller Indices. Failure to understand this has led to the redefinition [75, 83] of Miller indices [“In an I-centred cell, the Miller indices of this family of planes are (222), not (111)”], and in turn led to the absolutely wrong claims of unevenly distribution of lattice planes with the same Miller indices in a lattice [84] and different node densities within this family of planes [85].

Appendix 5 The comparison of s 11 and R M in microwave frequency from 10 to 18 GHz

The comparison between s11 and RM obtained at microwave frequencies 10–18 GHz is shown by Fig. 11.

Fig. 11
figure 11

The comparison of s11 obtained directly in the measurement with reflection loss RM calculated from Eqs. 88 or 89 for NiSm0.12Fe1.88O4, where permittivity, permeability, and s11 were measured with Keysight Technologies 85055AR03-FG Airline Type N, 50 ohm replacement kit, and Zl = Zair = Z0 = 377 ohm or Zl = Zapparatus = Z0 = 50 ohm for the calculation of RM

For planar transmission line

$$\begin{aligned} {Z_M}=\,& \sqrt {\frac{{{\mu _0}{\mu _{r,M}}}}{{{\varepsilon _0}{\varepsilon _{r,M}}}}} =\sqrt {\frac{{4\pi \times {{10}^{ - 7}}}}{{\frac{1}{{36\pi }} \times {{10}^{ - 9}}}}} \sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} =120\pi \sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} \\ R_M=\,& 20 \times {\log _{10}}\left| {\frac{{377 - 377\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} }}{{377\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} +377}}} \right|=20 \times {\log _{10}}\left| {\frac{{1 - \sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} }}{{\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} +1}}} \right| \\ \end{aligned}$$
(88)

For coaxial sampler [13] with the inner and outer radii of a = 3 mm and b = 7 mm, respectively

$$\begin{gathered} {Z_M}=\sqrt {\frac{{{\mu _0}{\mu _{r,M}}}}{{{\varepsilon _0}{\varepsilon _{r,M}}}}} \frac{{\ln \frac{b}{a}}}{{2\pi }}=50\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} \hfill \\R_M=20 \times {\log _{10}}\left| {\frac{{50 - 50\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} }}{{50\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} +50}}} \right|=20 \times {\log _{10}}\left| {\frac{{1 - \sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} }}{{\sqrt {\frac{{{\mu _{r,M}}}}{{{\varepsilon _{r,M}}}}} +1}}} \right| \hfill \\ \end{gathered}$$
(89)

Both Eqs. 88 and 89 do not involve sample thickness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Drew, M.G.B. & Liu, Y. Characterization microwave absorption from active carbon/BaSmxFe12−xO19/polypyrrole composites analyzed with a more rigorous method. J Mater Sci: Mater Electron 30, 1936–1956 (2019). https://doi.org/10.1007/s10854-018-0467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0467-1

Navigation