Skip to main content
Log in

Die swell behavior of liquid crystalline mesophase pitch

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Die swell of a spinnable mesophase pitch was explored using a fiber spinning apparatus with varied capillary geometries and processing conditions. It was found that the die swell decreased with increased shear rate and increased with a rise of temperature. A nearly constant die swell value can be reached as shear rate gets high enough for different temperatures, and it decreased with increased die angles, but maintained unchanged for capillaries with different length-to-diameter ratios. For orifice die, the die swell ratios were found to be affected little by the extrusion rate and the temperatures. The texture examination of the extrudates from orifice die and dies with capillaries shows that the extensional flow produces high molecular orientation, and the shear flow-induced tumbling might store elastic energy that will be recovered at the die exit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chand S (2000) Review carbon fibers for composites. J Mater Sci 35:1303–1313. doi:10.1023/a:1004780301489

    Article  Google Scholar 

  2. Yao YB, Chen JM, Liu L, Dong YM, Liu AH (2014) Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism. J Mater Sci 49:191–198. doi:10.1007/s10853-013-7692-z

    Article  Google Scholar 

  3. Edie DD (2003) The effect of processing on the structure and properties of carbon fibers. In: Delhaes P (ed) Fibers and composites. Taylor & Francis, London

    Google Scholar 

  4. Yoon S-H, Korai Y, Mochida I, Kato I (1994) The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature range of their spinning. Carbon 32:273–280. doi:10.1016/0008-6223(94)90190-2

    Article  Google Scholar 

  5. Dumont M, Dourges MA, Pailler R, Bourrat X (2003) Mesophase pitches for 3D-carbon fibre preform densification: rheology and processability☆. Fuel 82:1523–1529. doi:10.1016/S0016-2361(03)00039-5

    Article  Google Scholar 

  6. Cato AD, Edie DD (2003) Flow behavior of mesophase pitch. Carbon 41(7):1411–1417

    Article  Google Scholar 

  7. Wang CY, Li QZ, Zheng JM, Guo CT (1998) Die-swell measurement for the evaluation of elasticity of mesophase pitches. Carbon 36:1861–1863. doi:10.1016/S0008-6223(98)90058-6

    Article  Google Scholar 

  8. Marrucci G (1996) Theoretical aspects of the flow of liquid crystal polymers. In: Acierno D, Collyer AA (eds) Rheology and processing of liquid crystal polymers. Springer, London, p 115

    Google Scholar 

  9. Kiss G (1986) Anomalous temperature dependence of viscosity of thermotropic polyesters. J Rheol 30:585–599. doi:10.1122/1.549862

    Article  Google Scholar 

  10. Fan YR, Dai SC, Tanner RI (2003) Rheological properties of some thermotropic liquid crystalline polymers. Korea-Aust Rheol J 15(3):109–115

    Google Scholar 

  11. Nazem FF (1982) Flow of molten mesophase pitch. Carbon 20:345–354. doi:10.1016/0008-6223(82)90011-2

    Article  Google Scholar 

  12. Nazem FF (1980) Rheology of carbonaceous mesophase pitch. Fuel 59:851–858. doi:10.1016/0016-2361(80)90034-4

    Article  Google Scholar 

  13. Qing-Fang Z, Jing-Li S, Yong J, Lang L, Shu-An Q (1992) The effect of composition and process variables on the spinnability of mesophase pitch. Carbon 30:739–745. doi:10.1016/0008-6223(92)90156-Q

    Article  Google Scholar 

  14. Huang D, White JL (1980) Experimental and theoretical investigation of extrudate swell of polymer melts from small (length)/(cross-section) ratio slit and capillary dies. Polym Eng Sci 20:182–189. doi:10.1002/pen.760200303

    Article  Google Scholar 

  15. Liang JZ (2008) Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts. Polym Test 27:936–940. doi:10.1016/j.polymertesting.2008.08.001

    Article  Google Scholar 

  16. Cogswell FN, Wissbrun KF (1996) Rheology and processing of liquid crystal polymer melts. In: Acierno D, Collyer AA (eds) Rheology and processing of liquid crystal polymers. Springer, New york, p 115

    Google Scholar 

  17. Jerman RE, Baird DG (1981) Rheological properties of copolyester liquid crystalline melts. I. Capillary rheometry. J Rheol 25:275–292. doi:10.1122/1.549645

    Article  Google Scholar 

  18. La Mantia FP, Valenza A (1989) Shear and nonisothermal elongational characterization of a liquid crystalline polymer. Polym Eng Sci 29:625–631. doi:10.1002/pen.760291003

    Article  Google Scholar 

  19. Krigbaum WR, Liu CK, Yang DK (1988) Fiber spinning from the nematic melt. V. Flow instabilities in the 75:25 copolyester of p-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid. J Polym Sci Part B 26:1711–1725. doi:10.1002/polb.1988.090260811

    Article  Google Scholar 

  20. Yang DK, Krigbaum WR (1989) Rheological studies of thermotropic liquid crystal copolyesters: P-hydroxybenzoic acid/2-hydroxy-6-naphthoic acid. J Polym Sci Part B 27:819–835. doi:10.1002/polb.1989.090270408

    Article  Google Scholar 

  21. Metzner AB, Houghton WT, Sailor RA, White JL (1957–1977) A method for the measurement of normal stresses in simple shearing flow. Trans Soc Rheol 5:133–147. doi:10.1122/1.548891

  22. Wissbrun KF (1994) Note: negative extrudate swell of liquid crystal polymers. J Rheol 38:247–252. doi:10.1122/1.550503

    Article  Google Scholar 

  23. Seo KS (2001) Rheology and processing of thermotropic liquid crystalline polymers. Thermotropic liquid crystal polymers. CRC Press, Boca Raton. doi:10.1201/9781420012521.ch8

    Google Scholar 

  24. La Mantia F, Paci M, Magagnini P (1997) Isothermal elongational behavior of liquid-crystalline polymers and LCPs based blends. Rheola Acta 36:152–159. doi:10.1007/BF00366821

    Google Scholar 

  25. Turek DE, Simon GP, Tiu C (1992) The effect of die aspect ratio on the rheological properties of a thermotropic copolyester. J Rheol 36:1057–1078. doi:10.1122/1.550301

    Article  Google Scholar 

  26. Lee S, Eom Y, Kim B-J, Mochida I, Yoon S-H, Kim BC (2015) The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures. Carbon 81:694–701. doi:10.1016/j.carbon.2014.10.007

    Article  Google Scholar 

  27. Fathollahi B, White JL (1994) Polarized-light observations of flow-induced microstructures in mesophase pitch. J Rheol 38:1591–1607. doi:10.1122/1.550561

    Article  Google Scholar 

  28. Larson RG (1993) Roll-cell instabilities in shearing flows of nematic polymers. J Rheol 37:175–197. doi:10.1122/1.550440

    Article  Google Scholar 

  29. Farhoudi Y, Rey AD (1993) Shear flows of nematic polymers. I. Orienting modes, bifurcations, and steady state rheological predictions. J Rheol 37:289–314. doi:10.1122/1.550444

    Article  Google Scholar 

  30. Marrucci G, Greco F (1992) A molecular approach to the polydomain structure of LCPs in weak shear flows. J Nonnewton Fluid Mech 44:1–13. doi:10.1016/0377-0257(92)80042-V

    Article  Google Scholar 

  31. Tormes M, Muñoz ME, Santamaría A (1997) Deorientation effects on extrusion rheometry of a thermotropic copolyester. Macromol Rapid Commun 18:591–599. doi:10.1002/marc.1997.030180709

    Article  Google Scholar 

  32. Cogswell FN (1972) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12:64–73. doi:10.1002/pen.760120111

    Article  Google Scholar 

  33. Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts1. J Nonnewton Fluid Mech 79:137–155. doi:10.1016/S0377-0257(98)00102-5

    Article  Google Scholar 

  34. Mitsoulis E, Hatzikiriakos S (2003) Bagley correction: the effect of contraction angle and its prediction. Rheola Acta 42:309–320. doi:10.1007/s00397-003-0294-y

    Article  Google Scholar 

  35. Liang JZ, Ness JN (1997) Influence of the extrusion conditions on the flow behaviour of polystyrene melts. J Mater Process Technol 69:50–54. doi:10.1016/S0924-0136(96)00038-6

    Article  Google Scholar 

  36. Liang JZ (2001) Influence of die angles on pressure drop during extrusion of rubber compound. J Appl Polym Sci 80:1150–1154. doi:10.1002/app.1198

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the support of this work by the National Natural Science Foundation of China. (No. 51402102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ouyang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Ouyang, T., Yao, X. et al. Die swell behavior of liquid crystalline mesophase pitch. J Mater Sci 51, 7361–7369 (2016). https://doi.org/10.1007/s10853-016-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0025-2

Keywords

Navigation