Skip to main content
Log in

Lead-free relaxor ferroelectric ceramics Sr4+x Ca1−x BiTi3Nb7O30 with tunable transition temperature

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on nominal components, Sr4+x Ca1−x BiTi3Nb7O30 (x = 0.25, 0.5, 0.75, 1) ceramics were prepared by means of solid-state reaction method. Their transition temperatures T m can be experimentally tuned by controlling the atomic ratio of Sr2+/Ca2+. All the samples are demonstrated to exhibit relaxor ferroelectric property above room temperature, and T m can be controlled effectively by changing the content of Sr2+ ion in A1 site. In addition, the linear relation between T m and the x corresponding to Sr2+ ion of A1 site indicates that relaxor ferroelectric with wide-ranging transition temperatures can be obtained, catering for the potential applications. Meanwhile, the dielectric maximum temperature T m of relaxation-I obeyed the Vogel–Fulcher law well, and Curie–Weiss fitting confirmed the displacive-type ferroelectric phase transition in these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang JJ, Zhai JW, Yao X (2009) Dielectric tunable properties of low-loss Ba0.4Sr0.6Ti1−y Mn y O3 ceramics. Scr Mater 61:764–767

    Article  Google Scholar 

  2. Feteira A, Sinclair DC, Reaney IM, Somiya Y, Lanagan MT (2004) BaTiO3-based ceramics for tunable microwave applications. J Am Ceram Soc 87:1082–1087

    Article  Google Scholar 

  3. Irvin P, Levy J, Guo R, Bhalla AS (2005) Three-dimensional polarization imaging of (Ba, Sr)TiO3:MgO composites. Appl Phys Lett 86:042903

    Article  Google Scholar 

  4. Xiang F, Wang H, Li KC, Chen YH, Zhang MH, Shen ZY, Yao X (2007) Dielectric tunability of Ba0.6Sr0.4TiO3/poly(methyl methocrylate) composites in 1-3-type structure. Appl Phys Lett 91:192907

    Article  Google Scholar 

  5. Zhou K, Boggs SA, Ramprasad R, Aindow M, Erkey C, Alpay SP (2008) Dielectric response and tunability of a dielectric-paraelectric composite. Appl Phys Lett 93:102908

    Article  Google Scholar 

  6. Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys 15:R367–R411

    Google Scholar 

  7. Zhu XL, Li K, Rafiq MA, Liu XQ, Chen XM (2013) Relaxor nature in lead-free Sr5LaTi3Nb7O30 tetragonal tungsten bronze ceramics. J Appl Phys 114:124102

    Article  Google Scholar 

  8. Levin I, Stennett MC, Miles GC, Woodward DI, West AR, Reaney IM (2006) Coupling between octahedral tilting and ferroelectric order in tetragonal tungsten bronze-structured dielectrics. Appl Phys Lett 89:122908

    Article  Google Scholar 

  9. Li K, Zhu XL, Liu XQ, Chen XM (2012) Effects of Ca-substitution on structural, dielectric, and ferroelectric properties of Ba5SmTi3Nb7O30 tungsten bronze ceramics. Appl Phys Lett 101:042906

    Article  Google Scholar 

  10. Gong GS, Zerihun G, Fang YJ, Huang S, Yin CY, Yuan SL (2015) Relaxor behavior and large room-temperature polarization of ferroelectric Sr4CaBiTi3Nb7O30 ceramics. J Am Ceram Soc 98(1):109–113

    Article  Google Scholar 

  11. Zhu XL, Chen XM, Liu XQ (2008) Dielectric relaxations, ultrasonic attenuation, and their structure dependence in Sr4(LaxNd1−x )2Ti4Nb6O30 tungsten broneze ceramics. J Mater Res 23(11):3112–3121

    Article  Google Scholar 

  12. Sun YH, Chen XM, Zheng XH (2004) Tungsten bronze type dielectrics in SrO-Sm2O3-TiO2-Nb2O5 system and their dielectric anomaly. J Appl Phys 96(12):7435–7439

    Article  Google Scholar 

  13. Zhu X, Fu M, Stennett MC, Vilarinho PM, Levin I, Randall CA, Gardner J, Morrison FD, Reaney IM (2015) A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem Mater 27:3250–3261

    Article  Google Scholar 

  14. Viehland D, Jang SJ, Cross LE (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916–2921

    Article  Google Scholar 

  15. Zhu XL, Li K, Chen XM (2014) Ferroelectric transition and low-temperature dielectric relaxations in filled tungsten bronzes. J Am Ceram Soc 97(2):329–338

    Article  Google Scholar 

  16. Zhu XL, Chen XM (2014) Ferroelectric transition and Curie–Weiss behavior in some filled tungsten bronze ceramics. Chin Phys Lett 31(1):015201

    Article  Google Scholar 

  17. Li K, Zhu XL, Liu XQ, Chen XM (2013) Re-entrant relaxor behavior of Ba5RTi3Nb7O30 (R = La, Nd, Sm) tungsten bronze ceramics. Appl Phys Lett 102:112912

    Article  Google Scholar 

  18. Li K, Zhu XL, Liu XQ, Chen XM (2012) Relaxor ferroelectric characteristics of Ba5LaTi3Nb7O30 tungsten bronze ceramics. Appl Phys Lett 10:012902

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 61571403, 11174092, 11474111, 51002144) and Key Project of He’nan Educational Committee (Grant No. 14A140019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaoshang Gong or Songliu Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, G., Wang, Y., Liu, D. et al. Lead-free relaxor ferroelectric ceramics Sr4+x Ca1−x BiTi3Nb7O30 with tunable transition temperature. J Mater Sci 51, 7336–7342 (2016). https://doi.org/10.1007/s10853-016-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0018-1

Keywords

Navigation