Skip to main content
Log in

Diffuse Phase Transition and Dielectric Tunability of Ba0.97La0.02TiO3 Relaxor Ferroelectric Ceramic

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Lead-free La0.02Ba0.97TiO3 (2LBT) ceramic was elaborated via the molten-salt method characterized by XRD and Raman spectroscopy. Further their electric, dielectric, and ferroelectric properties were investigated. XRD results demonstrate that the sample possessed a pure-tetragonal structure with a space group of P4/mmm. The notable effect of incorporating the La3+ cation into an A-site sublattice was clarified using Raman spectroscopy. Significant improvements have been demonstrated in dielectric properties. The observed relaxation is attributed to Maxwell–Wagner polarization. 2LBT sample demonstrated a 3 phase transition with negligible frequency dispersion indicating diffuse phase transition at the specific temperature range (292–700 K). Upper than 700 K, 2LBT sample provided a pointy transition. The electrical properties obtained from the complex electric modulus reveal a conduction process owing to the short-range mobility of charge carrier. Both ac and dc electrical conductivities are considered vs. frequency and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. F. Wan, J.G. Han, Z.Y. Zhu, Phys. Lett. A. 372, 2137–2140 (2008)

    Article  CAS  Google Scholar 

  2. J.B. Xu, J.W. Zhai, X. Yao, J. Alloy. Compd. 467, 567–571 (2009)

    Article  CAS  Google Scholar 

  3. G. Arlt, D. Hennings, G. De-With, J. Appl. Phys. 58, 1619 (1985)

    Article  CAS  Google Scholar 

  4. H.J. Sun, S.H. Duan, X.F. Liu et al., J. Alloys Compd. 670, 262–267 (2016)

    Article  CAS  Google Scholar 

  5. F.D. Morrison, D.C. Sinclair, A.R. West, Int. J. Inorg. Mater. 3, 1205–1210 (2001)

    Article  CAS  Google Scholar 

  6. M.T. Biscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997–2007 (2000)

    Article  Google Scholar 

  7. R. Mahbub, M.S. Hossain, M.F. Islam, MEMI J. 20, 45–53 (2013)

    Google Scholar 

  8. A. Mazur, C. Verber, O. Kuper, H. Hese, Radiat. Eff. Defects Solids 150, 281 (1999)

    Article  Google Scholar 

  9. H. Veenhuis, T. Börger, K. Peithmann, M. Flaspöhler, K. Buse, R. Pankrath, H. Hesse, E. Krätzig, Appl. Phys. B: Lasers Opt. 70, 797 (2000)

    Article  CAS  Google Scholar 

  10. L.M. Hong, L.H. Yang, Mater. Sci. Eng. A. 323, 167 (2002)

    Article  Google Scholar 

  11. B. Wodecka-Dus, D. Czekaj, Arch. Metall. Mater. 54(4), 923–933 (2009)

    CAS  Google Scholar 

  12. M. Jebli et al., J. Alloys Compd. 784, 204–212 (2019)

    Article  CAS  Google Scholar 

  13. Z.C. Li, B. Bergman, J. Eur. Ceram. Soc. 25, 441–445 (2005)

    Article  CAS  Google Scholar 

  14. Y.J. Kim, J.W. Hyun, H.S. Kim, J.H. Lee, M.Y. Yun, S.J. Noh, Y.H. Ahn, Bull. Korean Chem. Soc. 30(6), 1268–1273 (2009)

    Google Scholar 

  15. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473 (2009)

    Article  Google Scholar 

  16. M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 074105 (2005)

    Article  Google Scholar 

  17. M. Jebli et al., Appl. Phys. A 126, 109 (2020)

    Article  CAS  Google Scholar 

  18. K. Aliouane, A. Guehria-Laidoudi, A. Simon, J. Ravez, Solid State Sci. 7, 1324 (2005)

    Article  CAS  Google Scholar 

  19. Z. Valdez-Nava, S. Guillemet-Fritsch, C. Tenailleau, T. Lebey, B. Durand, J.Y. Chane-Ching, J. Electroceram. 22, 238 (2009)

    Article  CAS  Google Scholar 

  20. D. Portehault, S. Delacroix, G. Gouget, R. Grosjean, T.-H.-C. Chan-Chang, Beyond the compositional threshold of nanoparticle-based materials. Acc. Chem. Res. 51, 930–939 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. C. Rayssi, M. Jebli, J. Dhahri et al., J. Mol. Struct. 1249, 131539 (2022)

    Article  CAS  Google Scholar 

  22. P. Xue, H. Wu, Y. Lu, X. Zhu, Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: a review. J Mater Sci Technol 34, 914–930 (2018)

    Article  CAS  Google Scholar 

  23. T. Kimura, Molten salt synthesis of ceramic powders, in Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications, pp 5–100 (2011)

  24. T. Kimura, M.H. Holmes, R.E. Newnham, Fabrication of grain-oriented Bi2WO6 ceramics. J. Am. Ceram. Soc. 65, 223–226 (1982)

    Article  CAS  Google Scholar 

  25. B.-R. Li, W. Shang, Z.-L. Hu, N.-Q. Zhang, Template-free fabrication of pure single-crystalline BaTiO3 nano-wires by molten salt synthesis technique. Ceram Int 40, 73–80 (2014)

    Article  Google Scholar 

  26. Y.W. Hu, P.P. Yong, L.C. Xiao, F.W. Jin, Study of reoxidation in heavily La-doped barium titanate ceramics. J. Phys. Conf. Ser. 152, 012040 (2009)

    Article  Google Scholar 

  27. K. Alioune, L.A. Guehria, A. Simon, J. Ravez, Study of new relaxor materials in BaTiO3-BaZrO3-La2/3TiO3 system. Solid State Sci. 7, 1324–1332 (2005)

    Article  Google Scholar 

  28. M. Ganguly, S.K. Rout, T.P. Sinha, J. Alloys Compd. 579, 473–484 (2013)

    Article  CAS  Google Scholar 

  29. M. Jebli et al., J. Mater. Sci.: Mater. Electron. 31(24), 22323–22339 (2020)

    CAS  Google Scholar 

  30. P. Dhak, D. Dhak, M. Das, K. Pramanik, P. Pramanik, Mater. Sci. Eng. B 164, 165–171 (2009)

    Article  CAS  Google Scholar 

  31. M. Jebli et al., Inorg. Chem. Commun. 129, 108628 (2021)

    Article  CAS  Google Scholar 

  32. Y. Wang, K. Miao, W. Wang, Yi. Qin, J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Article  Google Scholar 

  33. S. Boghosian, R. Fehrmann, in Molten Salts Chemistry, pp. 131–158 (2013)

  34. M. Jebli et al., RSC Adv. 11, 23664–23678 (2021)

    Article  CAS  Google Scholar 

  35. X. Wang, K. Huang, L. Yuan, S. Li, W. Ma, Z. Liu, S. Feng, ACS Appl. Mater. Interfaces 10, 28219–28231 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. C. Chen, Y. Wei, X. Jiao, D. Chen, Mater. Chem. Phys. 110, 186–191 (2008)

    Article  CAS  Google Scholar 

  37. M. Jebli et al., J. Mater. Sci. Mater. Electron. 31(18), 15296–15307 (2020)

    Article  CAS  Google Scholar 

  38. H.-J. Noh, S.-G. Lee, Trans. Electr. Electron. Mater. 10(2), 121–125 (2009)

    Article  Google Scholar 

  39. R. Kumar, K. Asokan, S. Patnaik, B. Birajdar, J. Alloys Compd. 687, 197–203 (2016)

    Article  CAS  Google Scholar 

  40. J. Pokorny, U. Pasha, L. Ben, O. Thakur, D. Sinclair, I. Reaney, J. Appl. Phys. 109, 114110 (2011)

    Article  Google Scholar 

  41. P.S. Dobal, A. Dixit, R.S. Katiyar, J. Raman Spectrosc. 38, 142–146 (2007)

    Article  CAS  Google Scholar 

  42. L. Veselinovi, M. Mitri, L. Mani, M. Vukomanovi, B. HadÅi, S. Markovi, D. Uskokovic, J. Appl. Crystallogr. 47, 999–1007 (2014)

    Article  Google Scholar 

  43. N. Baskaran, H. Chang, J. Mater. Sci.: Mater. Electron. 12, 527–531 (2001)

    CAS  Google Scholar 

  44. U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure. Phys. Rev. B 58, 14256 (1998)

    Article  CAS  Google Scholar 

  45. A. Feteira, D.C. Sinclair, J. Kreisel, J. Am. Ceram. Soc. 93, 4174–4181 (2010)

    Article  CAS  Google Scholar 

  46. R. Kumar, K. Asokan, S. Patnaik, B. Birajdar, J. Alloys Compd. 737, 561–567 (2018)

    Article  CAS  Google Scholar 

  47. S. Jesurani, S. Kanagesan, R. Velmurugan, T. Kalaivani, J. Mater. Sci: Mater. Electron. 23, 668–674 (2012)

    CAS  Google Scholar 

  48. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Ceram. Int. 40, 1635–1639 (2014)

    Article  CAS  Google Scholar 

  49. A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, R. Robert, M. Jose, Mater. Res. Bull. 106, 81–92 (2018)

    Article  CAS  Google Scholar 

  50. I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Process. 26, 516–526 (2014)

    Article  CAS  Google Scholar 

  51. M.M. El-Nahass, H.A.M. Ali, Solid State Commun. 152, 1084–1088 (2012)

    Article  CAS  Google Scholar 

  52. P. Kumar, P. Kumar, A. Kumar, R.C. Meena, R. Tomar, F. Chand, K. Asokan, J. Alloys Compd. 672, 543–548 (2016)

    Article  CAS  Google Scholar 

  53. M. Billah et al., AIP Conf. Proc. 1754(1), 030006 (2016)

    Article  Google Scholar 

  54. J. Yu, J. Sun, J. Chu, D. Tang, Appl. Phys. Lett. 77, 2807–2809 (2000)

    Article  CAS  Google Scholar 

  55. Y. Wang et al., J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Article  Google Scholar 

  56. M.M. Vijatovic, B.D. Stojanovic, J.D. Bobic, Ceram. Int. 36, 1817–1824 (2010)

    Article  CAS  Google Scholar 

  57. T. Ikeda, J. Phys. Soc. Jpn. 13, 335–336 (1958)

    Article  CAS  Google Scholar 

  58. D. Wang, R. Yu, S. Feng, W. Zheng, T. Takei, N. Kumada, Solid State Ion. 151, 329–333 (2002)

    Article  CAS  Google Scholar 

  59. T. Badapanda, S.K. Rout, Curr. Appl. Phys. 9, 727–731 (2009)

    Article  Google Scholar 

  60. F.J. Chen, Y.N. Pan, C.Y. Lee, C.S. Lin, J. Electrochem. Soc. 157, 154–158 (2010)

    Article  Google Scholar 

  61. S. Sonia, R.K. Patel, C. Prakash, P. Kumar, Mater. Chem. Phys. 130, 191–195 (2011)

    Article  Google Scholar 

  62. Y. Liu, B. Cui, Y. Wang, X.T. Zhao, Q.Q. Yan, T. Wu, L.L. Zhao, Y.Y. Wang, J. Eur. Ceram. Soc. 35, 2461–2469 (2015)

    Article  CAS  Google Scholar 

  63. W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 33–36 (1966)

    Article  CAS  Google Scholar 

  64. G. Arlt, Ferroelectrics 104, 217–227 (1990)

    Article  CAS  Google Scholar 

  65. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 131, 163–168 (2004)

    Article  CAS  Google Scholar 

  66. Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 94, 1843–1849 (2011)

    Article  CAS  Google Scholar 

  67. I.A. Velasco-Davalos, A. Ruediger, J.J. Cruz-Rivera, C. Gomez-Yañez, J. Alloys Compd. 581, 56–58 (2013)

    Article  CAS  Google Scholar 

  68. D. Shihua, S. Tianxiu, L. Guobiao, Ferroelectrics 445(1), 26–31 (2013)

    Article  Google Scholar 

  69. J.E. Joy et al., Solid State Sci. 12, 1970–1976 (2010)

    Article  CAS  Google Scholar 

  70. L. Jin, F. Li, S. Zhang, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  71. R. Kumar et al., J. Alloys Compd. 00, 1–7 (2018)

    Google Scholar 

  72. X. Chou, J. Zhai, X. Yao, Mater. Chem. Phys. 109, 125–130 (2008)

    Article  CAS  Google Scholar 

  73. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  74. G.A. Smolenskii, J. Phys. Soc. Jpn. 28, 26 (1970)

    Google Scholar 

  75. S. Kumar, K.B.R. Varma, J. Phys. D: Appl. Phys. 42, 075405 (2009)

    Article  Google Scholar 

  76. J. Ravez, A. Simon, J. Solid State Chem. 162, 260 (2001)

    Article  CAS  Google Scholar 

  77. M. Prabu, S. Selvasekarapandian, Mater. Chem. Phys. 134, 366–370 (2012)

    Article  CAS  Google Scholar 

  78. A. Sinha, A. Dutta, RSC Adv. 5, 100330–100338 (2015)

    Article  CAS  Google Scholar 

  79. R. Verma, S.P. Tiwari, R. Kumari, R. Srivastava, J. Mater. Sci. 53, 4199–4208 (2018)

    Article  CAS  Google Scholar 

  80. Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, J. Alloys Compd. 682, 738–754 (2016)

    Article  CAS  Google Scholar 

  81. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388–6394 (2011)

    Article  CAS  Google Scholar 

  82. H.A. Hashem, S. Abouelhassan, Chin. J. Phys. 43, 955 (2005)

    CAS  Google Scholar 

  83. J. Hao et al., J. Am. Ceram. Soc. 95(6), 1998–2006 (2012)

    Article  CAS  Google Scholar 

  84. R. Thomas, V.K. Varadan, S. Komarneni, D.C. Dube, Diffuse phase transitions, electrical conduction, and low temperature dielectric properties of sol–gel derived ferroelectric barium titanate thin films. J. Appl. Phys. 90, 1480–1488 (2001)

    Article  CAS  Google Scholar 

  85. Das, P.R.; Parida, B.N.; Padhee, R.; Choudhary, R.N.P. Electrical properties of Na2Pb2R2W2Ti4V4O30 (R.=Dy,Pr) ceramics. J. Adv. Ceram. 2 (2013) 112–118

  86. K. Łukaszewicz, A. Pietraszko, M. Kucharska, Diffuse scattering, short range order and nanodomains in the paraelectric SbSI. Ferroelectrics 375, 170–177 (2008)

    Article  Google Scholar 

  87. A.A. Grekov, N.A. Korchagina, N.P. Protsenko, E.D. Rogach, A.I. Rodin, S.D. Samko, Relaxation of domain structure in ferroelectric semiconductors. Ferroelectrics 18, 169–173 (1978)

    Article  CAS  Google Scholar 

  88. S.N. Popov, 121Sb and 123Sb NQR and the heterophase structure in the SbSI ferroelectric. Phys. Solid State 41, 1175–1181 (1999)

    Article  CAS  Google Scholar 

  89. L.L. Golik, E.S. Artobolevskaya, M.I. Yelinson, The effect of illumination on the parameters of SbSI crystals near the phase transition. Radiotekhnika i Elektron. 17, 1339–1342 (1972)

    CAS  Google Scholar 

  90. I.M. Afandiyeva, M.M. Bülbül, S. Altındal, S. Bengi, Microelectron Eng 93, 50 (2012)

    Article  CAS  Google Scholar 

  91. S. Selvasekarapandian, M. Vijaykumar, The ac impedance spec- troscopy studies on LiDyO2. J. Mater. Chem. Phys. 80, 29–33 (2003)

    Article  CAS  Google Scholar 

  92. J. Plocharski, W. Wieczoreck, PEO based composite solid electrolyte containing nasicon. Solid State Ion. 28–30, 979–982 (1982)

    Google Scholar 

  93. A. Ghosh, D. Chakravorty, J. Phys. Condens. Matter. 2, 5365–5372 (1990)

    Article  CAS  Google Scholar 

  94. X. Cleac’h, J. Phys. 40, 417–428 (1979)

    Article  Google Scholar 

  95. S.R. Elliott, Philos. Mag. B 36, 129 (1978)

    Google Scholar 

  96. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  CAS  Google Scholar 

  97. S.R. Elliott, Philos. Mag. 36, 1291–1304 (1977)

    Article  CAS  Google Scholar 

  98. S.R. Elliott, Adv. Phys. 36, 135–218 (1987)

    Article  CAS  Google Scholar 

  99. M.H.A. Pramanik, P.N. Butcher, I.D. Cox, Philos. Mag. B 47, 437–443 (1983)

    Article  CAS  Google Scholar 

  100. A.R. Long, Adv. Phys. 31, 553–637 (1982)

    Article  CAS  Google Scholar 

  101. A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this research work through the project number (R-2021-295).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marwa Jebli or M. A. Albedah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebli, M., Albedah, M.A., Dhahri, J. et al. Diffuse Phase Transition and Dielectric Tunability of Ba0.97La0.02TiO3 Relaxor Ferroelectric Ceramic. J Inorg Organomet Polym 32, 1334–1353 (2022). https://doi.org/10.1007/s10904-021-02189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02189-6

Keywords

Navigation