Skip to main content
Log in

Fabrication of efficient polymer light-emitting diodes using water/alcohol soluble poly(vinyl alcohol) doped with alkali metal salts as electron-injection layer

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An effective electron-injection layer (EIL) is crucial to efficient polymer light-emitting diodes (PLEDs) with high work-function metal as cathode. This work presents the use of water/alcohol soluble poly(vinyl alcohol) (PVA), especially doped with alkali metal salts, as a highly effective EIL to fabricate efficient multilayer PLEDs, allowing the use of stable aluminum as the cathode. Using neat PVA as EIL, the maximum brightness and maximum current efficiency of the device [ITO/PEDOT:PSS/SY/PVA/Al(90 nm)] were significantly enhanced to 5518 cd/m2 and 2.64 cd/A (from 395 cd/m2 and 0.06 cd/A without the EIL) due to promoted electron-injection and hole-blocking. The device performance is further enhanced by doping the PVA with alkali metal salts (M2CO3 or CH3COOM; M: Na, K, Cs), and the enhancement is increased with increasing dopant concentration. Particularly, the PVA doped with 30 wt% alkali metal carbonates revealed the best performance (20214–25163 cd/m2, 5.83–6.83 cd/A). This has been attributed to improved electron-injection from aluminum cathode, which has been confirmed by the corresponding increase in the open-circuit voltages (V oc) obtained from photovoltaic measurements. Current results indicate that commercially available PVA are promising electron-injection layer for PLEDs when doped with appropriate alkali metal salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  Google Scholar 

  2. Wu HB, Ying L, Yang W, Cao Y (2009) Progress and perspective of polymer white light-emitting devices and materials. Chem Soc Rev 38:3391–3400

    Article  Google Scholar 

  3. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595

    Article  Google Scholar 

  4. Yamamoto T, Kajii H, Ohmori Y (2014) Improved electron-injection from silver electrode for all solution-processed polymer light-emitting diodes with Cs2CO3: conjugated polyelectrolyte blended interfacial layer. Org Electron 15:1077–1082

    Article  Google Scholar 

  5. Malliaras GG, Scott JC (1998) The roles of injection and mobility in organic light emitting diodes. J Appl Phys 83:5399–5403

    Article  Google Scholar 

  6. Guo TF, Yang FS, Tsai ZJ, Wen TC, Hsieh SN, Fu YS, Chung CT (2006) Organic oxide/Al composite cathode in efficient polymer light-emitting diodes. Appl Phys Lett 88:113501

    Article  Google Scholar 

  7. Lu JH, Ma ZH, Meng B, Sui D, Zhang BH, Xie ZY, Jing XB, Wang FS, Ding JQ, Wang LX (2011) Phosphonate functionalized oxadiazole derivative as an efficient electron transporting material for solution-processed blue electrophosphorescent devices. Opt Express 19:A1241–A1249

    Article  Google Scholar 

  8. Parker ID, Cao Y, Yang CY (1999) Lifetime and degradation effects in polymer light-emitting diodes. J Appl Phys 85:2441–2447

    Article  Google Scholar 

  9. Lee TW, Kim MG, Park SH, Kim SY, Kwon O, Noh T, Park JJ, Choi TL, Park JH, Chin BD (2009) Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes. Adv Funct Mater 19:1863–1868

    Article  Google Scholar 

  10. So F, Kondakov D (2010) Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv Mater 22:3762–3777

    Article  Google Scholar 

  11. Zou JY, Yip HL, Zhang Y, Gao Y, Chien SC, O’Malley K, Chueh CC, Chen HZ, Jen AKY (2012) High-performance inverted polymer solar cells: device characterization, optical modeling, and hole-transporting modifications. Adv Funct Mater 22:2804–2811

    Article  Google Scholar 

  12. Zhou YH, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Bredas JL, Marder SR, Kahn A, Kippelen B (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332

    Article  Google Scholar 

  13. Huang F, Wu HB, Cao Y (2010) Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem Soc Rev 39:2500–2521

    Article  Google Scholar 

  14. Zhong CM, Duan CH, Huang F, Wu HB, Cao Y (2011) Materials and devices toward fully solution processable organic light-emitting diodes. Chem Mater 23:326–340

    Article  Google Scholar 

  15. Min C, Shi CS, Zhang WJ, Jiu TG, Chen JS, Ma DG, Fang JF (2013) A small-molecule zwitterionic electrolyte without a pi-delocalized unit as a charge-Injection layer for high-performance PLEDs. Angew Chem Int Ed 52:3417–3420

    Article  Google Scholar 

  16. Ouyang XH, Peng RX, Ai L, Zhang XY, Ge ZY (2015) Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat Photonics 9:520–524

    Article  Google Scholar 

  17. Rao MVM, Huang TS, Su YK, Tu ML, Huang CY, Wu SS (2010) Polymer light-emitting devices using poly(ethylene oxide) as an electron injecting layer. Nano-Micro Lett 2:49–52

    Article  Google Scholar 

  18. Tu ML, Su YK, Wu SS, Guo TF, Wen TC, Huang CY (2011) Violet electroluminescence from poly(N-vinylcarbazole)/ZnO-nanrod composite polymer light-emitting devices. Synth Met 161:450–454

    Article  Google Scholar 

  19. Lee TH, Huang JCA, Pakhomov GL, Guo TF, Wen TC, Huang YS, Tsou CC, Chung CT, Lin YC, Hsu YJ (2008) Organic-oxide cathode buffer layer in fabricating high-performance polymer light-emitting diodes. Adv Funct Mater 18:3036–3042

    Article  Google Scholar 

  20. Chen CW, Lu YJ, Wu CC, Wu EHE, Chu CW, Yang Y (2005) Effective connecting architecture for tandem organic light-emitting devices. Appl Phys Lett 87:241121

    Article  Google Scholar 

  21. Wu C-I, Lin C-T, Chen Y-H, Chen M-H, Lu Y-J, Wu C-C (2006) Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices. Appl Phys Lett 88:152104

    Article  Google Scholar 

  22. Hung LS, Tang CW, Mason MG (1997) Enhanced electron-injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett 70:152–154

    Article  Google Scholar 

  23. Jabbour GE, Kawabe Y, Shaheen SE, Wang JF, Morrell MM, Kippelen B, Peyghambarian N (1997) Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Appl Phys Lett 71:1762–1764

    Article  Google Scholar 

  24. Yoon J, Kim JJ, Lee TW, Park OO (2000) Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode. Appl Phys Lett 76:2152–2154

    Article  Google Scholar 

  25. Sax S, Rugen-Penkalla N, Neuhold A, Schuh S, Zojer E, List EJW, Mullen K (2010) Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents. Adv Mater 22:2087–2091

    Article  Google Scholar 

  26. Xu WD, Lai WY, Hu Q, Teng XY, Zhang XW, Huang W (2014) A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics. Polym Chem 5:2942–2950

    Article  Google Scholar 

  27. Ma W, Iyer PK, Gong X, Liu B, Moses D, Bazan GC, Heeger AJ (2005) Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes. Adv Mater 17:274–277

    Article  Google Scholar 

  28. Niu Y-H, Ma H, Xu Q, Jen AKY (2005) High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode. Appl Phys Lett 86:083504

    Article  Google Scholar 

  29. Chen YH, Lei ZF, Zhang XW, Chu SQ, Xu WD, Liu B, Oua CJ, Xiea LH, Fana QL, Lai WY (2016) Efficient blue organic light-emitting devices based on solution-processed starburst macromolecular electron injection layer. J Lumines 170:50–55

    Article  Google Scholar 

  30. Earmme T, Jenekhe SA (2012) High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials. J Mater Chem 20:4660–4668

    Article  Google Scholar 

  31. Wakimoto T, Fukuda Y, Nagayama K, Yokoi A, Nakada H, Tshuchida M (1997) Organic EL cells using alkaline metal compounds as electron injection materials. IEEEE Trans Electron Devices 44:1245–1248

    Article  Google Scholar 

  32. Ganzorig C, Suga K, Fujihara M (2001) Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mater Sci Eng B 85:140–143

    Article  Google Scholar 

  33. Wang D, Wu Y, Bi R, Zhang H, Zhao D (2015) Solution-processed sodium hydroxide as the electron-injection layer in inverted bottom-emission organic light-emitting diodes. J Mater Chem C 3:3922–3927

    Article  Google Scholar 

  34. Corcoran N, Arias AC, Kim JS, MacKenzie JD, Friend RH (2003) Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes. Appl Phys Lett 82:299–301

    Article  Google Scholar 

  35. Nguyen T-Q, Schwartz BJ (2002) Ionomeric control of interchain interactions, morphology, and the electronic properties of conjugated polymer solutions and films. J Chem Phys 116:8198–8208

    Article  Google Scholar 

  36. Ha YE, Jo MY, Park J, Kang Y-C, Moon S-J, Kim JH (2014) Effect of self-assembled monolayer treated ZnO as an electron transporting layer on the photovoltaic properties of inverted type polymer solar cells. Synth Met 187:113–117

    Article  Google Scholar 

  37. Huang F, Shih P-I, Shu C-F, Chi Y, Jen AK-Y (2009) Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer. Adv Mater 21:361–365

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the headquarters of university advancement at National Cheng Kung university, under the sponsorship of the ministry of education, Taiwan. The authors also gratefully acknowledge the financial support from the ministry of science and technology of Taiwan through grant MOST 104-2221-E-006-162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CL., Lin, CY. & Chen, Y. Fabrication of efficient polymer light-emitting diodes using water/alcohol soluble poly(vinyl alcohol) doped with alkali metal salts as electron-injection layer. J Mater Sci 51, 7286–7299 (2016). https://doi.org/10.1007/s10853-016-0011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0011-8

Keywords

Navigation