Skip to main content
Log in

Alcohol/water-soluble porphyrins as cathode interlayers in high-performance polymer solar cells

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three alcohol/water-soluble porphyrins (Zn-TPyPMeI:zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn-TPyPAdBr:zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide and MnCl-TPyPAdBr:man-ganese(III) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide were employed as cathode interlayers to fabricate polymer solar cells (PSCs). The PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) and PCDTBT (poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)])-blend films were used as active layers in polymer solar cells (PSCs). The PSCs with alcohol/water-soluble porphyrins interlayer showed obviously higher power conversion efficiency (PCE) than those without interlayers. The highest PCE, 6.86%, was achieved for the device with MnCl-TPyPAdBr as an interlayer. Ultraviolet photoemission spectroscopic (UPS), carrier mobility, atomic force microscopy (AFM) and contact angle (θ) characterizations demonstrated that the porphyrin molecules can result in the formation of interfacial dipole layer between active layer and cathode. The interfacial dipole layer can obviously improve the open-circuit voltage (V oc) and charge extraction, and sequentially lead to the increase of PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open circuit voltage and efficient. Nat Photonic, 2009, 3: 649–653

    Article  CAS  Google Scholar 

  2. Ye L, Zhang SQ, Zhao WC, Yao HF, Hou JH. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605

    Article  CAS  Google Scholar 

  3. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonic, 2012, 6: 591–595

    Google Scholar 

  4. He ZC, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  Google Scholar 

  5. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138

    Article  CAS  Google Scholar 

  6. Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed, 2011, 50: 9697–9702

    Article  CAS  Google Scholar 

  7. Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie Z, Geng Y, Wang F. Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. Adv Mater, 2013, 3: 471–476

    Google Scholar 

  8. Gao L, Zhang J, He C, Zhang Y, Sun QJ, Li YF. Effect of additives on the photovoltaic properties of organic solar cells based on triphen-ylamine-containing amorphous molecules. Sci China Chem, 2014, 57: 966–972

    Article  CAS  Google Scholar 

  9. Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Sci China Chem, 2014, 57: 973–981

    Article  CAS  Google Scholar 

  10. Liu J, Shao S, Fang G, Meng B, Xie Z, Wang L. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv Mater, 2012, 24: 2774–2779

    Article  CAS  Google Scholar 

  11. Yang TB, Qin DH, Lan LF, Huang WB, Gong X, Peng JB, Cao Y. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 55: 755–759

    Article  CAS  Google Scholar 

  12. Jo J, Na SI, Kim SS, Lee TW, Chung Y, Kang SJ, Vak D, Kim DY. Three-dimensional bulk heterojunction morphology for achieving high internal quantum efficiency in polymer solar cells. Adv Funct Mater, 2009, 19: 2398–2406

    Article  CAS  Google Scholar 

  13. Tang Z, Andersson LM, George Z, Vandewal K, Tvingstedt K, Heriksson P, Kroon R, Andersson MR, Inganäs O. Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells. Adv Mater, 2012, 24: 554–558

    Article  CAS  Google Scholar 

  14. Oh SH, Na SI, Jo J, Lim B, Vak D, Kim DY. Water-soluble polyfluorenes as an interfacial layer leading to cathode-independent high performance of organic solar cells. Adv Funct Mater, 2010, 20: 1977–1983

    Article  CAS  Google Scholar 

  15. Zhao Y, Xie Z, Qin C, Qu Y, Geng Y, Wang L. Enhanced charge collection in polymer photovoltaic cells by using an enthanol-soluble conjugated polyfluorene as cathode buffer layer. Sol Energ Mat Sol C, 2009, 93: 604–608

    Article  CAS  Google Scholar 

  16. Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J Am Chem Soc, 2011, 133: 8416–8419

    Article  CAS  Google Scholar 

  17. Chang YM, Zhu R, Richard E, Chen CC, Li G, Yang Y. Electrostatic self-assembly conjugated polyelectrolyte-surfactant complex as an interlayer for high performance polymer solar cells. Adv Funct Mater, 2012, 22: 3284–3289

    Article  CAS  Google Scholar 

  18. Li SS, Lei M, Lv ML, Watkins SE, Tan ZA, Zhu J, Hou JH, Chen XW, Li YF. [6,6]-Phenyl-C61-butyric acid dimethylamino ester as a cathode buffer layer for high-performance polymer solar cells. Adv Energy Mater, 2013, 3: 1569–1574

    Article  CAS  Google Scholar 

  19. Ye H, Hu X, Jiang Z, Chen D, Liu X, Nie H, Su SJ, Gong X, Cao Y. Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells. J Mater Chem A, 2013, 1: 3387–3394

    Article  CAS  Google Scholar 

  20. Vasilopoulou M, Georgiadou DG, Douvas AM, Soultati A, Constantoudis V, Davazoglou D, Gardelis S, Palilis LC, Fakis M, Kennou S, Lazarides T, Coutsolelos AG, Argitis P. Porphyin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. J Mater Chem A, 2014, 2: 182–192

    Article  CAS  Google Scholar 

  21. Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su X, Chen Y. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc, 2012, 134: 16345–16351

    Article  CAS  Google Scholar 

  22. Tsuda A, Osuka A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science, 2001, 293: 79–82

    Article  CAS  Google Scholar 

  23. Zhang H, Zhang B, Zhu M, Grayson SM, Schmehl R, Jayawickramarajah J. Water-soluble porphyrin nanospheres: enhancedphoto-physical properties achieved viacyclodextrin driven double self-inclusion. Chem Commun, 2014, 50: 4853–4855

    Article  CAS  Google Scholar 

  24. Dong RJ, Bo Y, Tong G, Zhou Y, Zhu X, Lu Y. Self-assembly and optical properties of a porphyrin-based amphiphile. Nanoscale, 2014, 6: 4544–4550

    Article  CAS  Google Scholar 

  25. Huo C, Zhang HD, Zhang HY, Zhang HY, Yang B, Zhang P, Wang Y. Synthesis and assembly with mesoprous silica MCM-48 of platinum prophyrin complexes bearing carbazeyl groups: spectroscopic and oxygen sensing properties. Inorg Chem, 2006, 45: 4735–4742

    Article  CAS  Google Scholar 

  26. Bhyrappa P, Young JK, Moore JS, Suslick KS. Dendrimer-metallo-porphyrins: synthesis and catalysis. J Am Chem Soc, 1996, 118: 5708–5711

    Article  CAS  Google Scholar 

  27. Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew Chem Int Ed, 2012, 124: 7558–7562

    Article  Google Scholar 

  28. Janghouri M, Mohajerani E, Amini MM, Safari N. Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin (IV) complex for electroluminescence. J Porphyr Phthalocya, 2013, 17: 351–358

    Article  CAS  Google Scholar 

  29. Graham KR, Yang Y, Sommer JR, Shelton AH, Schanze KS, Xue J, Reynolds JR. Extended conjugation platinum prophyrins for use in near-infrared emitting organic light emitting diodes. Chem Mater, 2011, 23: 5305–5312

    Article  CAS  Google Scholar 

  30. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grtäzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem, 2014, 6: 242–247

    Article  CAS  Google Scholar 

  31. Luechai A, Gasiorowski J, Petsom A, Neugebauer H, Sariciftci NS, Thamyongkit P. Photosensitizing porphyrin-triazine compound for bulk heterojunction solar cells. J Mater Chem, 2012, 22: 23030–23037

    Article  CAS  Google Scholar 

  32. Singh VK, Kanaparthi RK, Giribabu L. Emerging molecular design strategies of unsymmetrical phthalocyanines for dye-senstitized solar cell applications. RSC Adv, 2014, 4: 6970–6984

    Article  CAS  Google Scholar 

  33. Wu C, Chen M, Su P, Kuo H, Wang C, Lu C, Tsai C, Wu C, Lin C. Porphyrins for efficient dye-sensitized solar cells covering the near-IR region. J Mater Chem A, 2014, 2: 991–999

    Article  CAS  Google Scholar 

  34. Zervaki GE, Papastamatakis E, Angaridis PA, Nikolaou V, Singh M, Kurchania R, Kitsopoulos TN, Sharma GD, Coutsolelos AG. A propeller-shaped, triazine-linked porphyrin triad as efficient sensitizer for dye-sensitized solar cells. Eur J Inorg Chem, 2014, 6: 1020–1033

    Article  Google Scholar 

  35. Vasilopoulou M, Georgiadou DG, Douvas AM, Soultati A, Constantoudis V, Davazoglou D, Gardelis S, Palilis LC, Fakis M, Kennou S, Lazarides T, Coutsolelosd AG, Argitis P. Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. J Mater Chem A, 2014, 2: 182–192

    Article  CAS  Google Scholar 

  36. Zervaki GE, Roy MS, Panda MK, Angaridis PA, Chrissos E, Sharma GD, Coutsolelos AG. Efficient sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin-porphyrin dyads. Inorg Chem, 2013, 52: 9813–9825

    Article  CAS  Google Scholar 

  37. Sharmaa GD, Daphnomili D, Biswas S, Coutsolelos AG. New soluble porphyrin bearing a pyridinylethynyl group as donor for bulk heterojunction solar cells. Org Electronics, 2013, 14: 1811–1819

    Article  Google Scholar 

  38. Choi S, Chae SH, Hoang MH, Kim KH, Huh JA, Kim Y, Kim SJ, Choi DH, Lee SJ. An unsymmetrically π-extended porphyrin-based single-crystal field-effect transistor and its anisotropic carrier-transport behavior. Chem Eur J, 2013, 19: 2247–2251

    Article  CAS  Google Scholar 

  39. Zhang ZG, Li H, Qi BY, Chi D, Jin ZW, Qi Z, Hou JH, Li YF, Wang JZ. Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. J Mater Chem A, 2013, 1: 9624–9629

    Article  CAS  Google Scholar 

  40. Zhang ZG, Hui H, Qi Z, Jin ZW, Liu G, Hou JH, Li YF, Wang JZ. Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Appl Phys Lett, 2013, 102: 143902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Zhou, W., Li, F. et al. Alcohol/water-soluble porphyrins as cathode interlayers in high-performance polymer solar cells. Sci. China Chem. 58, 323–330 (2015). https://doi.org/10.1007/s11426-014-5218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5218-4

Keywords

Navigation