Skip to main content
Log in

Enhanced hydrothermal stability of ZSM-5 formed from nanocrystalline seeds for naphtha catalytic cracking

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We successfully synthesized hydrothermally stable ZSM-5 with crystalline nano seeds. We employed a template-free method using ZSM-5 crystalline nano seeds and sodium silicate as a silica source. The prepared ZSM-5 exhibited uniform crystal size and relative crystallinity greater than 100 %. The size of the crystalline nano seed in the scale of 100 nm was found to be the optimum size for obtaining uniform, highly crystalline ZSM-5 with structural stability. After P-modification, the synthesized ZSM-5 with the optimally sized seed showed high hydrothermal stability and improved catalytic naphtha cracking activity compared to a commercial ZSM-5 catalyst. In order to find the elements for the increased hydrothermal stability, the samples were evaluated by studying crystallinity, aluminum spectrum, and acidity using XRD, solid-state NMR, and NH3-TPD, respectively after steaming at 800 °C for 24 h. It is speculated that the increased hydrothermal stability of the ZSM-5 resulted mainly from the increased aluminum structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blasco T, Corma A, Martinez-Triguero J (2006) Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J Catal 237:267–277

    Article  Google Scholar 

  2. Zhuang JQ, Ma D, Yang G, Yan ZM, Liu XM, Liu XC, Han XW, Bao XH, Xie P, Liu ZM (2004) Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking. J Catal 228:234–242

    Article  Google Scholar 

  3. Sterte J, Otterstedt JE (1988) Catalytic cracking of heavy oil: use of alumina montmorillonites both as catalysts and as matrices for rare earth exchanged zeolite Y molecular sieve. Appl Catal 38:131–142

    Article  Google Scholar 

  4. Kaeding WW, Chu C, Young LB, Butter SA (1981) Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. J Catal 69:392–398

    Article  Google Scholar 

  5. Young LB, Butter SA, Kaeding WW (1982) Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. J Catal 76:418–432

    Article  Google Scholar 

  6. Lercher JA, Rumplmayr G (1986) Controlled decrease of acid strength by orthophosphoric acid on ZSM5. Appl Catal 25:215–222

    Article  Google Scholar 

  7. Chang CD, Chu C, Socha RF (1984) Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2Al2O3. J Catal 86:289–296

    Article  Google Scholar 

  8. Liu D, Choi WC, Lee CW, Kang NY, Lee YJ, Shin CH, Park YK (2011) Steaming and washing effect of P/HZSM-5 in catalytic cracking of naphtha. Catal Today 164:154–157

    Article  Google Scholar 

  9. Dai FY, Suzuki M, Takahashi H, Saito Y (1986) Mechanism of zeolite crystallization without using template reagents of organic bases. Stud Surf Sci Catal 28:223–230

    Article  Google Scholar 

  10. Shiralkar VP, Clearfield A (1989) Synthesis of the molecular sieve ZSM-5 without the aid of templates. Zeolites 9:363–370

    Article  Google Scholar 

  11. Tissler A, Polanek P, Girrbach U, Müller U, Unger KK (1989) Control of catalytic properties of ZSM-5 made by fast and template-free synthesis. Stud Surf Sci Catal 46:399–408

    Article  Google Scholar 

  12. Plank CJ, Rosinski EJ (1992) Method for producing zeolites. US Pat. 5,102,644

  13. Martinez NP, Lujano JA, Alvarez N, Machado F, Lopez CM (1993) Zeolitic catalyst of MFI type, its preparation and use. US Pat. 5,254,327

  14. Woo HH, Hong JS, Suh JK, Lee KY, Lee JM (2004) Synthesis and characteristics of ZSM-5 zeolite prepared from water glass. J Ind Eng Chem 4:645–652

    Google Scholar 

  15. Klocke DJ (1993) Small crystal ZSM-5, as a catalyst. US Pat. 5,240,892

  16. Otake M (1994) MFI zeolite crystallization under controlled dosage of TPA template. Zeolites 14:42–52

    Article  Google Scholar 

  17. Kalipcilar H, Culfaz A (2001) Influence of nature of silica source on template-free synthesis of ZSM-5. Cryst Res Technol 36:1197–1207

    Article  Google Scholar 

  18. Jacobs Peter A, Martens JA (1987) Synthesis of high-silica aluminosilicate zeolites: studies in surface science and catalysis. Elsevier, Amsterdam

    Google Scholar 

  19. Grose RW, Flanigen EM (1981) Novel zeolite compositions and processes for preparing and using same. US Pat. 4,257,885

  20. Xie B, Song J, Ren L, Ji Y, Li J, Xiao F-S (2008) Organotemplate-free and fast route for synthesizing beta zeolite. Chem Mater 20:4533–4535

    Article  Google Scholar 

  21. Choi S, Park DS, Kim SJ, Park YK, Lee CW, Kim HY, Choi WC, Kang NY, Song BS (2014) Method of preparing ZSM-5 zeolite using nanocrystalline ZSM-5 seeds. US Pat 8,840,864 B2

  22. Hu Y, Liu C, Zhang Y, Ren N, Tang Y (2009) Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Microporous Mesoporous Mater 119:306–314

    Article  Google Scholar 

  23. Wang P, Shen B, Gao J (2007) Synthesis of ZSM-5 zeolite from expanded perlite and its catalytic performance in FCC gasoline aromatization. Catal Today 125:155–162

    Article  Google Scholar 

  24. Erdem A, Sand LB (1979) Crystallization and metastable phase transformations of zeolite ZSM-5 in the (TPA)2O Na2O K2O Al2O3 SiO2 H2O system. J Catal 60:241–256

    Article  Google Scholar 

  25. Brar T, France P, Smirniotis PG (2001) Control of crystal size and distribution of zeolite A. Ind End Chem Res 40:1133–1139

    Article  Google Scholar 

  26. Kacierk H, Lechert H (1976) Rates of crystallization and a model for the growth of NaY zeolites. J Phys Chem 80:1291–1296

    Article  Google Scholar 

  27. Thompson RW, Dyer A (1985) Mathematical analyses of zeolite crystallization. Zeolites 5:202–210

    Article  Google Scholar 

  28. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398:1–17

    Article  Google Scholar 

  29. Degnan TF, Chitnis GK, Schipper PH (2000) History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous Mesoporous Mater 35:245–252

    Article  Google Scholar 

  30. Konno H, Tago T, Nakasaka Y, Ohnaka R, Nishimura J, Masuda Takao (2013) Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanismon catalytic cracking of representative hydrocarbons of naphtha. Microporous Mesoporous Mater 175:25–33

    Article  Google Scholar 

  31. Xue N (2007) Understanding the enhancement of catalytic performance for olefin cracking: hydrothermally stable acids in P/HZSM-5. J Catal 248:20–28

    Article  Google Scholar 

  32. Kojima M, Lefebvre F, Taarit YB (1992) Modification of siliceous zeolites using phosphorus pentachloride. Zeolites 12:724–727

    Article  Google Scholar 

  33. Lischke G, Eckelt R, Jerschkewitz H, Parlitz B, Schreier E, Schreier W, Zibrowius B, Ohlman G (1990) Spectroscopic and physicochemical characterization of P-modified H-ZSM-5. J Catal 132:229–243

    Article  Google Scholar 

  34. Caro J, Bulow M, Derewinski D, Haber J, Hunger M, Karger J, Pferifer H, Torek W, Zibrowius B (1990) NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid. J Catal 124:367–375

    Article  Google Scholar 

  35. Yamaguchi Aritomo, Jin Dingfeng, Ikeda Takuji, Sato Koichi, NorihitoHiyoshi Takaaki Hanaoka, Mizukami Fujio, Shirai Masayuki (2014) Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane. Fuel Process Technol 126:343–349

    Article  Google Scholar 

  36. Seo G, Ryoo R (1990) 31P, 27Al, and 129Xe NMR study of phosphorus-impregnated HZSM-5 zeolite catalysts. J Catal 124:224–230

    Article  Google Scholar 

  37. Caeiro F, Magnoux P, Lopes JM, Ramoa Ribeiro F (2006) Stabilization effect of phosphorus on steamed H-MFI zeolites. Appl Catal A 14:160

    Article  Google Scholar 

  38. Zhuang J, Ma D, Yang G, Yan Z, Liu X, Liu X, Hn X, Bao X, Xie P, Liu Z (2004) Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking. J Catal 228:234–242

    Article  Google Scholar 

  39. Grimmer AR, Haubenreisser U (1983) High-field static and MAS 31P NMR: chemical shift tensors of polycrystalline potassium phosphates P2O5·xK2O (O ≤ x ≤ 3). Chem Phys Lett 99:487–490

    Article  Google Scholar 

  40. Duncan TM, Douglass DC (1984) On the 31P chemical shift anisotropy in condensed phosphates. Chem Phys 87:339–349

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the R&D Convergence Program of MSIP(Ministry of Science, ICT and Future Planning) and NST (National Research Council of Science & Technology) of Republic of Korea (Project No. CRC-14-1-KRICT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ki Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, N.Y., Woo, S.I., Lee, Y.J. et al. Enhanced hydrothermal stability of ZSM-5 formed from nanocrystalline seeds for naphtha catalytic cracking. J Mater Sci 51, 3735–3749 (2016). https://doi.org/10.1007/s10853-015-9691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9691-8

Keywords

Navigation