Skip to main content
Log in

Seed-assisted grinding synthesis of SAPO-34 catalyst and its prolonged catalytic lifetime in the conversion of methanol to olefins

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A cost-effective route has been developed for the synthesis of nano-sized triclinic SAPO-34 zeolite via seed-assisted grinding method using lower dosage of morpholine as the sole template. The synthesis conditions including silica source, silica concentration, crystallization temperature and time were refined to obtain SAPO-34 zeolite with high phase purity and crystallinity. Particularly, seed crystals preactivated by different methods were utilized to induce the synthesis of nano-sized SAPO-34 zeolites in the subsequent study. The resultant SAPO-34 samples were characterized by XRD, SEM, N2 physisorption and NH3-TPD techniques. It was found that the introduction of seed crystals activated by mechanical milling for 20 min and chemical etching with 0.0001 M and 0.01 M H3PO4 can not only effectively reduce the crystal size of SAPO-34 zeolites from 3–4 μm to 500–800 nm level, but also can modify their texture and acid properties. This nano-sized SAPO-34 catalyst exhibits a remarkably prolonged catalytic lifetime in methanol to olefins (MTO) reaction in comparison to the conventional micron-sized counterpart. Analogous to solvent-free synthesis of zeolites, this seed-assisted grinding synthesis method is simpler, more efficient than conventional hydrothermal synthesis. More importantly, this method provides a new avenue for preparing superior MTO catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Z, Yu J, Xu R (2012) Chem Soc Rev 41:1729–1741

    PubMed  Google Scholar 

  2. Moliner M, Martinez C, Corma A (2015) Angew Chem Int Ed 54:3560–3579

    CAS  Google Scholar 

  3. Čejka J, Centi G, Perez-Pariente J, Roth W (2012) Catal Today 179:2–15

    Google Scholar 

  4. Corma A (2003) J Catal 216:298–312

    CAS  Google Scholar 

  5. Xi D, Sun Q, Chen X, Wang N, Yu J (2015) Chem Commun 51:11987–11989

    CAS  Google Scholar 

  6. Corma A (1997) Chem Rev 97:2373–2420

    CAS  PubMed  Google Scholar 

  7. Zhao X, Zhao J, Gao X, Zhao Y (2015) RSC Adv 5:95690–95694

    CAS  Google Scholar 

  8. Jin Y, Sun Q, Qi G, Yang C, Xu J, Chen F, Meng X, Deng F, Xiao F (2013) Angew Chem Int Ed 52:9172–9175

    CAS  Google Scholar 

  9. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F (2012) J Am Chem Soc 134:15173–15176

    CAS  PubMed  Google Scholar 

  10. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2005) Stud Surf Sci Catal 158:247–254

    Google Scholar 

  11. Song J, Dai L, Ji Y, Xiao F (2006) Chem Mater 37:2775–2777

    Google Scholar 

  12. Wang Y, Wang X, Wu Q, Meng X, Jin Y, Zhou X, Xiao F (2014) Catal Today 226:103–108

    CAS  Google Scholar 

  13. Kamimura Y, Itabashi K, Kon Y, Endo A, Okubo T (2017) Chem Asian J 12:530–542

    CAS  PubMed  Google Scholar 

  14. Yue Y, Kang Y, Bai Y, Gu L, Liu H, Bao J, Wang T, Yuan P, Zhu H, Bai Z, Bao X (2018) Appl Clay Sci 158:177–185

    CAS  Google Scholar 

  15. Yang C, Ren L, Zhang H, Zhu L (2012) J Mater Chem 22:12238–12245

    CAS  Google Scholar 

  16. Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao F (2011) Chem Commun 47:9789–9791

    CAS  Google Scholar 

  17. Wang Y, Zhu C, Qiu J, Jiang F (2016) Eur J Inorg Chem 2016:1364–1368

    CAS  Google Scholar 

  18. Wu Q, Wang X, Meng X, Yang C, Liu Y, Jin Y, Yang Q, Xiao F (2014) Microporous Mesoporous Mater 186:106–112

    CAS  Google Scholar 

  19. Liu Y, Lu Y, Zhao X, Xu L, Mintova S, Yan Z, Liu X (2018) Chem Commun 54:10950–10953

    CAS  Google Scholar 

  20. Zhao X, Wang Q, Duan W, Li G, Ji D, Zhao Y (2018) Eur J Inorg Chem 2018:4331–4337

    CAS  Google Scholar 

  21. Chen D, Moljord K, Fuglerud T, Holmena A (1999) Microporous Mesoporous Mater 29:191–203

    CAS  Google Scholar 

  22. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Catal Today 179:27–34

    Google Scholar 

  23. Najafi N, Askari S, Halladj R (2014) Powder Technol 254:324–330

    CAS  Google Scholar 

  24. Yang H, Liu X, Lu G, Wan Y (2016) Microporous Mesoporous Mater 225:144–153

    CAS  Google Scholar 

  25. Ren S, Liu G, Wu X, Chen X, Wu M, Zeng G, Liu Z, Sun Y (2017) Chin J Catal 38:123–130

    CAS  Google Scholar 

  26. Chen X, Xi D, Sun Q, Wang N, Dai Z, Fan D, Valtche V, Yu J (2016) Microporous Mesoporous Mater 234:401–408

    CAS  Google Scholar 

  27. Qiao Y, Yang M, Gao B, Wang L, Tian P, Xu S, Liu Z (2016) Chem Commun 52:5718–5721

    CAS  Google Scholar 

  28. Wen J, Wang B, Tuo P, Li C, Li L, Zhao H, Gao X, Shen B (2018) Ind Eng Chem Res 57:4231–4236

    Google Scholar 

  29. Varzaneh A, Towfighi J, Sahebdelfar S, Bahrami H (2016) J Anal Appl Pyrol 121:11–23

    CAS  Google Scholar 

  30. Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Microporous Mesoporous Mater 164:214–221

    CAS  Google Scholar 

  31. Deng Z, Zhang Y, Zhou X (2016) Chem React Eng Technol 32:22–26

    CAS  Google Scholar 

  32. Miletto I, Ivaldi C, Paul G, Chapman S, Marchese L, Raja R, Gianotti E (2018) Chemistryopen 7:297–301

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun Q, Wang N, Guo G, Chen X, Yu J (2015) J Mater Chem A 3:19783–19789

    CAS  Google Scholar 

  34. Choi M, Cho H, Srivastava R, Venkatesan C, Choi D, Ryoo R (2006) Nat Mater 5:718–723

    CAS  PubMed  Google Scholar 

  35. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Chem Commun 50:6502–6505

    CAS  Google Scholar 

  36. Sun Q, Wang N, Bai R, Chen X, Yu J (2016) J Mater Chem A 4:14978–14982

    CAS  Google Scholar 

  37. Harding M, Kariuki B (1994) Acta Crystallogr C 50:852–854

    Google Scholar 

  38. Yu J (2007) Stud Surf Sci Catal 168:39–103

    CAS  Google Scholar 

  39. Sánchez-Sánchez M, Romero A, Pinilla-Herrero I, Sastre E (2017) Catal Today 296:239–246

    Google Scholar 

  40. Askari S, Siahmard A, Halladj R, Alipour S (2014) Powder Technol 301:268–287

    Google Scholar 

  41. Wang X, Li R, Bakhtiar SUH, Yuan F, Li Z, Zhu Y (2018) Catal Commun 108:64–67

    CAS  Google Scholar 

  42. Aghaei E, Haghighi M (2015) Powder Technol 269:358–370

    CAS  Google Scholar 

  43. Watanabe Y, Koiwai A, Takeuchi H, Hyodo S, Noda S (1993) J Catal 143:430–436

    CAS  Google Scholar 

  44. Iyoki K, Itabashi K, Okubo T (2014) Microporous Mesoporous Mater 189:22–30

    CAS  Google Scholar 

  45. Zhao X, Gao X, Zhang X, Hao Z (2017) Microporous Mesoporous Mater 242:160–165

    Google Scholar 

  46. Zhao X, Duan W, Zhang X, Ji D, Zhao Y, Li G (2018) Reac Kinet Mech Cat 125:1055–1070

    CAS  Google Scholar 

  47. Strizhak P, Zhokh A, Trypolskyi A (2017) Reac Kinet Mech Cat 123:247–268

    Google Scholar 

  48. Lee Y, Baek S, Jun K (2007) Appl Catal A 329:130–136

    CAS  Google Scholar 

  49. Ghalbi-Ahangari M, Rashidi Ranjbar P, Rashidi A, Teymuri M (2017) Reac Kinet Mech Cat 122:1265–1279

    CAS  Google Scholar 

  50. Wang P, Yang D, Hu J, Xu J, Lu G (2013) Catal Today 212:62.e1–62.e8

    CAS  Google Scholar 

  51. Li M, Wang Y, Chang L, Nan G, Hu D, Zhang Y, Wei W (2017) Appl Catal A 531:203–211

    CAS  Google Scholar 

  52. Chen G, Sun Q, Yu J (2017) Chem Commun 53:13328–13331

    CAS  Google Scholar 

  53. Gharibi Kharaji A, Beheshti M, Repke Jens-Uwe, Tangestani-nejad S, Görke Oliver, Reza Godini H (2019) Reac Kinet Mech Cat 127:375–390

    CAS  Google Scholar 

  54. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Yan Z (2009) Appl Catal A 364:48–56

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21666019) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA124). We cordially thank the Reviewers and Editors for providing us with valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Duan, W. & Zhao, X. Seed-assisted grinding synthesis of SAPO-34 catalyst and its prolonged catalytic lifetime in the conversion of methanol to olefins. Reac Kinet Mech Cat 128, 1029–1042 (2019). https://doi.org/10.1007/s11144-019-01655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01655-0

Keywords

Navigation