Skip to main content
Log in

Direct observations of erosion-induced ferroelasticity in EB-PVD thermal barrier coatings

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Imaging of the presence and location of erosion-induced ferroelastic toughening was completed on 8-weight percent yttria-stabilized zirconia EB-PVD thermal barrier coatings using confocal polarized Raman spectroscopy. A combination of measurements made using ultraviolet and visible laser radiation was conducted to determine the location and extent of ferroelastic twinning present at and below the eroded surfaces as well as along fracture surfaces of the coatings. Ferroelastic twinning events were identified at three major locations within and on the coating: the erosion surface, just below the surface, and in the bulk of the coating. The results shown here reveal that not all fracture events result in a ferroelastic response. This suggests there may be an opportunity to increase the toughness of thermal barrier coatings by increasing the possibility that a crack can produce a ferroelastic twin in the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, He MY, Spitsber I, Fleck NA, Hutchinson JW, Evans AG (2004) Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear 256:735–746

    Article  Google Scholar 

  2. Wellman R, Nicholls J (2005) The effect of TBC morphology on the erosion rate of EB-PVD TBCs. Wear 258(1–4):349–356

    Article  Google Scholar 

  3. Evans AG, Clarke DR, Levi CG (2008) The influence of oxides on the performance of advanced gas turbines. J Euro Ceram Soc 28(7):1405–1419

    Article  Google Scholar 

  4. Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Ann Rev Mat Res 3:383–417

    Article  Google Scholar 

  5. Levi CG (2004) Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 8(1):77–91

    Article  Google Scholar 

  6. Stiger MJ, Yanar NM, Topping MG, Pettit FS, Meier GH (1999) Thermal barrier coatings for the 21st century. Z MetaIlkd 90(12):1069–1078

    Google Scholar 

  7. Choi SR, Bansal NP, Zhu DM (2005) Mechanical and thermal properties of advanced oxide materials for higher-temperature coatings applications. In: Zhu D, Plucknett K (eds) Advances in ceramic coatings and ceramic-metal systems, vol 26., Ceramic engineering and science proceedingsAm. Ceram. Soc, Westerville, pp 11–19

    Google Scholar 

  8. Padture NP, Gell M, Jordan EH (2002) Materials science-thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284

    Article  Google Scholar 

  9. Beele W, Marijnissen G, Van Lieshout A (1999) The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues. Surf Coat Technol 120:61–67

    Article  Google Scholar 

  10. Miller RA (1987) Current status of thermal barrier coatings-an overview. Surf Coat Technol 30(1):1–11

    Article  Google Scholar 

  11. Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Euro Ceram Soc 24(1):1–10

    Article  Google Scholar 

  12. Evans AG, Fleck NA, Faulhaber S, Vermaak N, Maloney M, Darolia R (2006) Scaling laws governing the erosion and impact resistance of thermal barrier coatings. Wear 260:886–894

    Article  Google Scholar 

  13. Toriz F, Thakker A, Gupta DK (1989) Flight service evaluation of thermal barrier coatings by physical vapor depositions at 5200 hours. Surf Coat Technol 39–40:161–172

    Article  Google Scholar 

  14. Chen X, Wang R, Yao N, Evans AG, Hutchinson JW, Bruce RW (2003) Foreign object damage in a thermal barrier system: mechanisms and simulations. Mater Sci Eng A 352(1-2):221–231

    Article  Google Scholar 

  15. Wellman RG, Nicholls JR (2000) Some observations on erosion mechanisms of EB-PVD TBCs. Wear 242(1-2):89–96

    Article  Google Scholar 

  16. Stecura S (1979) Effect of compositional changes on the performance of thermal barrier coatings system. In NASA Technical Memorandum 78976. NASA, Lewis Research Center Cleveland, OH

  17. Maloney M (2000) Thermal barrier coating systems and materials, US Patent No. 6117560, USA

  18. Zhu DM, Miller RA (1998) Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings. Surf Coat Technol 108(1-3):114–120

    Article  Google Scholar 

  19. Barsoum M (2003) Fundamentals of ceramics Institute of Physics Publishing. Bristol, UK

    Book  Google Scholar 

  20. Manson S, Halford G (2006) Fatigue and durability of structural materials. ASM International, USA, p 456

    Google Scholar 

  21. Green D, Hannink RHJ, Swain M (1989) Transformation toughening of ceramics. CRC Press, Boca Raton, FL

    Google Scholar 

  22. Kelly P, Rose L (2002) The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci 47(5):463–557

    Article  Google Scholar 

  23. Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206

    Article  Google Scholar 

  24. Mercer C, Williams JR, Clarke DR, Evans AG (2007) On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t’) yttria-stabilized zirconia. Proc R Soc A 463(2081):1393–1408

    Article  Google Scholar 

  25. Chan CJ, Lange FF, Ruhle M, Jue JF, Virkar AV (1991) Ferroelastic domain switching in tetragonal zirconia in Defects. In: Bristowe PD, Epperson JE, Griffith JE, Lilientalweber Z (eds) Materials, vol 209., Materials research society symposium proceedingsMaterials Research Soc, Pittsburgh, pp 725–730

    Google Scholar 

  26. Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258(5537):703–704

    Article  Google Scholar 

  27. Marshall D (1986) Strength characteristics of transformation-toughened zirconia. J Am Ceram Soc 69(3):173–180

    Article  Google Scholar 

  28. Porter D, Evans AG, Heuer AH (1979) Transformation-toughening in partially-stabilized zirconia (PSZ). Acta Met 27:1649–1654

    Article  Google Scholar 

  29. Porter D, Heuer AH (1977) Mechanisms of toughening partially stabilized zirconia (PSZ). J Am Ceram Soc 60(3-4):183–184

    Article  Google Scholar 

  30. Virkar AV, Matsumoto RLK (1986) Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceram Soc 69(10):C224–C226

    Article  Google Scholar 

  31. Becher P (1991) Microstructural design of toughened ceramics. J Am Ceram Soc 74(2):255–269

    Article  Google Scholar 

  32. Basu B (2005) Toughening of yttria-stabilized tetragonal zirconia ceramics. Int Mat Rev 50(4):239–256

    Article  Google Scholar 

  33. Raddatz O, Schneider G, Mackens W, Voss H, Claussen N (2000) Bridging stresses and R-curves in ceramic/metal composites. J Euro Ceram Soc 20(13):2261–2273

    Article  Google Scholar 

  34. Lawn B (1998) Indentation of ceramics with spheres: a century after Hertz. J Am Ceram Soc 81(8):1977–1994

    Article  Google Scholar 

  35. Lawn B (2004) Fracture and deformation in brittle solids: a perspective on the issue of scale. J Mater Res 19(1):22–29

    Article  Google Scholar 

  36. Srinivasan GV, Jue JF, Kuo SY, Virkar AV (1989) Ferroelastic domain switching in polydomain tetragonal zirconia single-crystals. J Am Ceram Soc 72(11):2098–2103

    Article  Google Scholar 

  37. Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics-stress relief. J Mat Sci 25(6):2655–2666. doi:10.1007/BF00584864

    Article  Google Scholar 

  38. Sapriel J (1975) Domain-wall orientations in ferroelastics. Phys Rev B 12(11):5128–5140

    Article  Google Scholar 

  39. Messerschmidt U, Baither D, Baufeld B, Bartsch M (1997) Plastic deformation of zirconia single crystals: a review. Mater Sci Eng A 233(1–2):61–74

    Article  Google Scholar 

  40. Bolon A, Gentleman MM (2011) Raman spectroscopic observations of ferroelastic switching in ceria stabilized zirconia. J Am Ceram Soc 94(12):4478–4482

    Article  Google Scholar 

  41. Bolon A, Sisneros T, Schubert A, Clausen B, Brown D, Gentleman MM (2014) Comparison of neutron diffraction and Raman spectroscopic studies of the ferroelastic behavior of ceria-stabilized zirconia at elevated temperatures. J Euro Ceram Soc 35(2):623–629

    Article  Google Scholar 

  42. Schultz U, Schmucker M (2000) Microstructure of ZrO2 thermal barrier coatings applied by EB-PVD. Mater Sci Eng A 276(1-2):1–8

    Article  Google Scholar 

  43. Wellman RG, Deakin MJ, Nicholls JR (2005) The effect of TBC morphology and aging on the erosion rate of EB-PVD TBCs. Trib Int 38(9):798–804

    Article  Google Scholar 

  44. Wood D, Nassau K (1982) Refractive index of cubic zirconia stabilized with yttria. Appl Opt 21(16):2978–2981

    Article  Google Scholar 

  45. Gentleman MM, Clarke DR (2004) Concepts for luminescence sensing of thermal barrier coatings. Surf Coat Technol 188:93–100

    Article  Google Scholar 

  46. Limarga AM, Clarke DR (2007) Piezo-spectroscopic coefficients of tetragonal-prime ytria-stabilized zirconia. J Am Ceramic Soc 90(4):1272–1275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. Gentleman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, A.B., Wellman, R., Nicholls, J. et al. Direct observations of erosion-induced ferroelasticity in EB-PVD thermal barrier coatings. J Mater Sci 51, 3136–3145 (2016). https://doi.org/10.1007/s10853-015-9623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9623-7

Keywords

Navigation