Skip to main content
Log in

Simultaneous optimisation of orientation and constituent volume in piezoelectric composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Piezoelectric composites are optimised for maximum strain levels by simultaneously accounting for the concentration and orientation of the piezoelectric and polymer constituents. Existing studies in piezoelectric composites are confined to independently identifying either the optimal volume fraction or the orientation of the piezoelectric phase. Four different composite configurations of single-crystal/polycrystal piezoelectric with polymer are analysed. Yet the polarisation orientation is found to play a crucial role in the piezoelectric response of ferroelectrics. The choice of an optimal composite is complicated, and it is impossible to analyse all possible permutations and combinations of the piezoelectric volume fractions, grain orientation distribution parameters (in the case of polycrystalline piezoelectrics plus polymer) or the crystallographic orientation angles (in the case of single-crystal piezoelectrics and polymer) themselves. Optimal design variables which would generate single-/polycrystalline configurations that enhance the macroscopic piezoelectricity of the composite are identified. It is found that juxtaposing a preferentially oriented piezoelectric material with a polymer into a composite would result in enhancement of piezoelectric figures of merit from constituent phases. It is shown that a small fraction of piezoelectric material (\(v_\mathrm{f}=0.14\)) is sufficient to design an optimal piezoelectric composite that can generate piezoelectric strains comparable to that of single-phase material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536

    Article  Google Scholar 

  2. Uchino K (2000) Ferroelectric devices. Marcel Dekker, New York

    Google Scholar 

  3. Smith WA (1986) Composite piezoelectric materials for medical ultrasonic imaging transducers-a review. In: Proceedings of IEEE ultrasonics symposium, pp 249–256

  4. Tanimoto T, Okazaki K, Yamamoto K (1993) Tensile stress-strain behavior of piezoelectric ceramics. Jpn J Appl Phys 32(9):4233–4236. doi:10.1143/JJAP.32.4233

    Article  Google Scholar 

  5. Hagood N, Bent A (1993) Development of piezoelectric fiber composites for structural actuation. In: 34th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, La Jolla, CA, pp 3625–3638

  6. Smith WA, Auld BA (1991) Modeling 1–3 composite piezoelectrics, thickness-mode oscillations. IEEE Trans Ultrason Ferroelectr 38(1):40–47

    Article  Google Scholar 

  7. Delnavaz A, Voix J (2014) Flexible piezoelectric energy harvesting from jaw movements. Smart Mater Struct 23:105020. doi:10.1088/0964-1726/23/10/105020

    Article  Google Scholar 

  8. Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2):023,001

    Article  Google Scholar 

  9. Takeuchi H, Jyomura S, Nakaya C (1985) New piezoelectric materials for ultrasonic transducers. Jpn J Appl Phys 24(2):36–40

    Article  Google Scholar 

  10. Zhao P, Li J (2009) Investigation of orientation effects on the electro-mechanical coupling behavior of 13 piezoelectric composites under compression. Smart Mater Struct 18(10):104,011. doi:10.1088/0964-1726/18/10/104011

  11. Odegard G (2004) Constitutive modeling of piezoelectric polymer composites. Acta Mater 52:5315–5330

    Article  Google Scholar 

  12. Gururaja TR, Schulze WA, Cross LE, Newnham RE (1985) Piezoelectric composite materials for ultrasonic transducer applications. Part II: evaluation of ultrasonic medical applications. IEEE Trans Sonics Ultrason 32(4):499–513

    Article  Google Scholar 

  13. Akdogan E, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferrelectr 52(5):746–775. doi:10.1109/TUFFC.2005.1503962

    Article  Google Scholar 

  14. Jayachandran KP, Guedes JM, Rodrigues HC (2008) Piezoelectricity enhancement in ferroelectric ceramics due to orientation. Appl Phys Lett 92(23):232901

    Article  Google Scholar 

  15. Marcheselli C, Venkatesh TA (2008) Electromechanical response of 1–3 piezoelectric composites with hollow fibers. Appl Phys Lett 93(2):022903. doi:10.1063/1.2944266

    Article  Google Scholar 

  16. Nan CW, Weng GJ (2000) Influence of polarization orientation on the effective properties of piezoelectric composites. J Appl Phys 88(1):416–423

    Article  Google Scholar 

  17. Topolov VY, Krivoruchko AV (2009) Orientation effects in 2–2 piezocomposites based on (1 \(-\) x)pb(a[sub 1/3]nb[sub 2/3])o[sub 3] \(-\) xpbtio[sub 3] single crystals (a = mg or zn). J Appl Phys 105(7):074105. doi:10.1063/1.2956403

    Article  Google Scholar 

  18. Turcu S, Jadidian B, Danforth S, Safari A (2002) Piezoelectric properties of novel oriented ceramic-polymer composites with 2–2 and 3–3 connectivity. J Electroceram 9:165–171

    Article  Google Scholar 

  19. Jayachandran KP, Guedes J, Rodrigues H (2011) Ferroelectric materials for piezoelectric actuators by optimal design. Acta Mater 59(10):3770–3778. doi:10.1016/j.actamat.2011.02.005

    Article  Google Scholar 

  20. Jayachandran KP, Guedes JM, Rodrigues HC (2010) Optimal configuration of microstructure in ferroelectric materials by stochastic optimization. J Appl Phys 108:024101

    Article  Google Scholar 

  21. Jayachandran KP, Guedes JM, Rodrigues HC (2009a) Enhancement of the electromechanical response in ferroelectric ceramics by design. J Appl Phys 105(8):084103

    Article  Google Scholar 

  22. Silva ECN, Fonseca JSO, Kikuchi N (1998) Optimal design of periodic piezocomposites. Comput Methods Appl Mech Eng 159(1–2):49–77

    Article  Google Scholar 

  23. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, vol 127. Lecture notes in physics. Springer, Berlin

    Google Scholar 

  24. Tiersten HF (1967) Hamilton’s principle for linear piezoelectric media. Proc IEEE 55(8):1523–1524

    Article  Google Scholar 

  25. Telega JJ (1990) Piezoelectricity and homogenization: application to biomechanics, Continuum models and discrete systems, vol 2. Longman, London, pp 220–230

    Google Scholar 

  26. Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon, Oxford

    Google Scholar 

  27. Silva ECN, Nishiwaki S, Fonseca JSO, Kikuchi N (1999) Optimization methods applied to material and flextensional actuator design using the homogenization method. Comput Methods Appl Mech Eng 172:241–271

    Article  Google Scholar 

  28. Subbarao EC, McQuarrie MC, Buessem WR (1957) Domain effects in polycrystalline barium titanate. J Appl Phys 28(10):1194–1200

    Article  Google Scholar 

  29. Jayachandran KP, Guedes JM, Rodrigues HC (2009b) Homogenization of textured as well as randomly oriented ferroelectric polycrystals. Comp Mater Sci 45:816–820

    Article  Google Scholar 

  30. Huet C (1990) Application of variational concepts to size effects in elastic heterogeneous bodies. J Mech Phys Solids 38(6):813–814

    Article  Google Scholar 

  31. Zgonik M, Bernasconi P, Duelli M, Schlesser R, Gunter P, Garrett MH, Rytz D, Zhu Y, Wu X (1994) Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO\(_3\) crystals. Phys Rev B 50:5941–5949

    Article  Google Scholar 

  32. Feng X, Yang BD, Liu Y, Wang Y, Dagdeviren C, Liu Z, Carlson A, Li J, Huang Y, Rogers JA (2011) Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5(4):3326–3332. doi:10.1021/nn200477q

    Article  Google Scholar 

  33. Zheng J, Takahashi S, Yoshikawa S, Uchino K, de Vries JWC (1996) Heat generation in multilayer piezoelectric actuators. J Amer Ceram Soc 79(12):3193–3198. doi:10.1111/j.1151-2916.1996.tb08095.x

    Article  Google Scholar 

  34. Granstrom J, Feenstra J, Sodano HA, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16(5):1810–1820

    Article  Google Scholar 

  35. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  Google Scholar 

  36. Dreo J, Petrowski A, Siarry P, Taillard E (2006) Metaheuristics for hard optimization. Springer, Berlin

    Google Scholar 

  37. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  38. Park SE, Shrout TR (1997) Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mat Res Innovat 1:20–25

    Article  Google Scholar 

  39. Kar-Gupta R, Venkatesh T (2007) Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater 55:1093–1108

    Article  Google Scholar 

  40. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys 38(Part 1, No. 9B):5505–5511

  41. Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28(3):347–350

    Article  Google Scholar 

  42. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 29:45–96

    Article  Google Scholar 

  43. Brosnan KH, Messing GL, Meyer RJ Jr, Vaudin MD (2006) Texture measurements in \(<001>\) fiber-oriented PMN -PT. J Am Ceram Soc 89:1965–1971

    Article  Google Scholar 

  44. Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structuresI. J Inorg Nucl Chem 9:113–123

    Article  Google Scholar 

  45. Garcia RE, Carter WC, Langer SA (2005) The effect of texture and microstructure on the macroscopic properties of polycrystalline piezoelectrics: application to Barium Titanate and PZN-PT. J Am Ceram Soc 88:750–757

    Article  Google Scholar 

  46. Jayachandran KP, Guedes JM, Rodrigues HC (2011b) Stochastic optimization of ferroelectric ceramics for piezoelectric applications. Struct Multidisc Optim 44:199–212. doi:10.1007/s00158-011-0626-y

    Article  Google Scholar 

Download references

Acknowledgements

KPJ acknowledges the award of Ciência 2007 from Fundação para a Ciência e a Tecnologia (FCT), Portugal. Also support from the Project PTDC/EME-PME/120630/2010 from FCT is acknowledged.

Funding

This study was partially funded by Fundação para a Ciência e a Tecnologia (FCT), Portugal (project PTDC/EME-PME/120630/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Jayachandran.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, K.P., Guedes, J.M. & Rodrigues, H.C. Simultaneous optimisation of orientation and constituent volume in piezoelectric composites. J Mater Sci 51, 3069–3079 (2016). https://doi.org/10.1007/s10853-015-9617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9617-5

Keywords

Navigation