Skip to main content
Log in

Stochastic optimization of ferroelectric ceramics for piezoelectric applications

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

An optimization model and numerical framework is developed to identify the optimal microstructure of ferroelectric (FE) materials. Piezoelectricity in polycrystalline ceramic FEs differs significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The polarization and for that matter the piezoelectric properties of FEs are inextricably related to the orientation of individual crystallographic grains that constitute the polycrystal. The orientation of the grains fall in a Gaussian distribution after the poling process. The orientation distribution parameters, (viz., the standard deviation σ and mean μ) hence, would play the crucial role in the effective piezoelectric properties of FE polycrystals. We have applied a stochastic optimization combined with homogenization to determine the optimal distribution parameters which dictates the orientation distribution (texture) of an ideal ferroelectric polycrystal. This procedure would be used to find out the optimum piezoelectric properties characterised by the piezoelectric coefficients \(e_{\it ijk}\). The method is applied with an objective to maximize the piezoelectricity of ferroelectric BaTiO3 which in turn maximizes the electromechanical coupling. Convergence studies are made in order to arrive at a meaningful representative volume element for the computation. Focussing on the polar component of piezoelectric coefficient, e 33, the optimization course is perfected. Apparent enhancement of piezoelectric coefficient \(e_{\it ijk}\) is observed in an optimally oriented BaTiO3 single crystal. In polycrystalline ceramics, optimal grain configurations that shows better piezoelectric performance than polar ferroelectrics are derived. Our optimization model provides designs for materials with better piezoelectric performance, which would stimulate further studies involving materials possessing higher spontaneous polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Throughout this text, we have used Einstein summation convention that repeated indices are implicitly summed over.

  2. Nonpolar in the sense that a direction other than the spontaneous polarization direction.

  3. μ θ qualifies as a design variable owing to the freedom of global rotation (e.g., Jayachandran et al. 2008) of the polycrystal which would in turn changes the average of Euler angles.

  4. Since the strains \(\varepsilon_{\it jk}\) are symmetric, \(e_{\it ijk}=e_{\it ikj}\) which implies that \(e_{\it ijk}\equiv e_{i\nu}\). Here we use the matrix (or compressed) notation where the Latin indices run from 1 to 3 and Greek indices run from 1 to 6 (Nye 1985).

  5. Individual perturbations.

  6. Nonetheless, the percentage deviations from the mean values of all the e s are similar.

References

  • Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, kwang Mao H, Hemley R, Ren Y, Liermann P, Wu Z (2008) Origin of morphotropic phase boundaries in ferroelectrics. Nature 451:545–548

    Article  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21

    Article  Google Scholar 

  • Berlincourt DA, Krueger HHA, Near C (1999) Properties of piezoelectric ceramics. Technical publications TP-226. Morgan Electroceramics Ltd., Wrexham, UK

  • Brosnan KH, Messing GL, Meyer Jr RJ, Vaudin MD (2006) Texture measurements in < 001 > fiber-oriented PMN -PT. J Am Ceram Soc 89:1965–1971

    Article  Google Scholar 

  • Challande P (1990) Optimizing ultrasonic transducer based on piezoelectric composites using a finite element method. IEEE Trans Ultrason Ferroelectr Freq Control 37(2):135–140

    Article  Google Scholar 

  • Chang Y, Poterala SF, Yang Z, Trolier-McKinstry S, Messing GL (2009) <001>textured(K0.5Na0.5)(Nb0.97Sb0.03)O0.3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl Phys Lett 95:232905

    Article  Google Scholar 

  • Cohanim BE, Hewitt JN, de Weck O (2004) The design of radio telescope array configurations using multiobjective optimization: imaging performance versus cable length. Astrophys J Suppl Ser 154(2):705–719

    Article  Google Scholar 

  • Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267

    Article  Google Scholar 

  • Damjanovic D, Budimir M, Davis M, Setter N (2006) Piezoelectric anisotropy: enhanced piezoelectric response along nonpolar directions in perovskite crystals. J Mater Sci 41:65–76

    Article  Google Scholar 

  • Du X, Wang QM, Belegundu U, Bhalla A, Uchino K (1999) Crystal orientation dependence of piezoelectric properties of single crystal barium titanate. Mater Lett 40s:109–113

    Article  Google Scholar 

  • Frecker MI (2003) Recent advances in optimization of smart structures and actuators. J Intell Mater Syst Struct 14:207–216

    Article  Google Scholar 

  • Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechaical response in single-crystal piezoelectrics. Nature 403:281–283

    Article  Google Scholar 

  • Gibiansky LV, Torquato S (1997) Optimal design of 1–3 composite piezoelectrics. Struct Optim 13:23–28

    Article  Google Scholar 

  • Gilbert JM, Austin EM (2007) Demonstration of optimizing piezoelectric polarization in the design of a fluxtensional actuator. Struct Multidisc Optim 33:471–480

    Article  Google Scholar 

  • Goldstein H (1978) Classical mechanics. Addison-Wesley, Reading

    Google Scholar 

  • Gururaja TR, Schulze WA, Cross LE, Newnham RE, Auld BA, Yang YJ (1985) Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Trans Sonics Ultrason SU-32(4):481–498

    Google Scholar 

  • Huber JE, Fleck NA, Landis CM, McMeeking RM (1999) A constitutive model for ferroelectric polycrystals. J Mech Phys Solids 47(8):1663–1697

    Article  MathSciNet  MATH  Google Scholar 

  • Jayachandran KP, Guedes JM, Rodrigues HC (2007) Homogenized electromechanical properties of crystalline and ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3. Smart Mater Struct 16:1534–1541

    Article  Google Scholar 

  • Jayachandran KP, Guedes JM, Rodrigues HC (2008) Piezoelectricity enhancement in ferroelectric ceramics due to orientation. Appl Phys Lett 92(23):232901

    Article  Google Scholar 

  • Jayachandran KP, Guedes JM, Rodrigues HC (2009) Effect of microstructure and texture on the macroscopic piezoelectric response of ferroelectric barium titanate and PZN–PT films. J Intell Mater Syst Struct 20:193–204

    Article  Google Scholar 

  • Kamlah M (2001) Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Contin Mech Thermodyn 13:219–218

    Google Scholar 

  • Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  • Kuwata J, Uchino K, Nomura S (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Jpn J Appl Phys 21:1298–1302

    Article  Google Scholar 

  • Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, Oxford

    Google Scholar 

  • Liu JJ, Zhou YC, Soh AK, Li J (2006) Engineering domain configurations for enhanced piezoelectricity in barium titanate single crystals. Appl Phys Lett 88:032904

    Article  Google Scholar 

  • Liu SF, Park SE, Lei H, Cross LE, Shrout TR (1999) E-field dependence of piezoelectric properties of rhombohedral PZN-PT single crystal. Ferroelectrics 221:169–174

    Article  Google Scholar 

  • Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structuresI. J Inorg Nucl Chem 9:113–123

    Article  Google Scholar 

  • Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 29:45–96

    Article  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon, Oxford

    Google Scholar 

  • Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Article  Google Scholar 

  • Priya S, Inman DJ (eds) (2009) Energy harvesting technologies. Springer, New York

    Google Scholar 

  • Ruglovsky JL, Li J, Bhattacharya K, Atwater HA (2006) The effect of biaxial texture on the effective electromechanical constants of polycrystalline barium titanate and lead titanate thin films. Acta Mater 54:3657–3663

    Article  Google Scholar 

  • Rutenbar RA (1989) Simulated annealing algorithms: an overview. IEEE Circuit Devic 5:19–26

    Article  Google Scholar 

  • Scott JF (2007) Applications of modern ferroelectrics. Science 315(5814):954–959

    Article  Google Scholar 

  • Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8:365–379

    Article  Google Scholar 

  • Silva ECN, Kikuchi N (1999) Design of piezoelectric transducers using topology optimization. Smart Mater Struct 8:350–365

    Article  Google Scholar 

  • Silva ECN, Nishiwaki S, Fonseca JSO, Kikuchi N (1999) Optimization methods applied to material and flextensional actuator design using the homogenization method. Comput Methods Appl Mech Eng 172:241–271

    Article  MathSciNet  MATH  Google Scholar 

  • Silva ECN, Nishiwaki S, Kikuchi N (2000) Topology optimization design of flextensional actuators. IEEE Trans Ultrason Ferroelectr Freq Control 47:657–671

    Article  Google Scholar 

  • Smith WA (1986) Composite piezoelectric materials for medical ultrasonic imaging transducers-a review. In: IEEE ultrason. symp. proc., pp 249–256

  • Smith WA, Shaulov A, Auld BA (1985) Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. In: IEEE ultrason. symp. proc., pp 642–647

  • Subbarao EC, McQuarrie MC, Buessem WR (1957) Domain effects in polycrystalline barium titanate. J Appl Phys 28(10):1194–1200

    Article  Google Scholar 

  • Telega JJ (1990) Piezoelectricity and homogenization: application to biomechanics. In: Continuum models and discrete systems, vol 2. Longman, London, pp 220–230

    Google Scholar 

  • Uchino K (2000) Ferroelectric devices. Marcel Dekker, New York

    Google Scholar 

  • Uetsuji Y, Nakamura Y, Ueda S, Nakamachi E (2004) Numerical investigation on ferroelectric properties of piezoelectric materials using a crystallographic homogenization method. Model Simul Mater Sci Eng 12:S303–S317

    Article  Google Scholar 

  • Uetsuji Y, Horio M, Tsuchiya K (2008) Optimization of crystal microstructure in piezoelectric ceramics by multiscale finite element analysis. Acta Mater 56:1991–2002

    Article  Google Scholar 

  • Wada S, Tsurumi T (2004) Enhanced piezoelectricity of barium titanate single crystals with engineered domain configuration. Br Ceram Trans 103:93–96

    Article  Google Scholar 

  • Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys 38(Part 1, No 9B):5505–5511

    Article  Google Scholar 

  • Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J Appl Phys 98:014109

    Article  Google Scholar 

  • Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T (2007) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46(10B):7039–7043

    Article  Google Scholar 

  • Wang Y, Or SW, Chan HLW, Zhao X, Luo H (2008) Enhanced magnetoelectric effect in longitudinal-transverse mode Terfenol-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites with optimal crystal cut. J Appl Phys 103:124511

    Article  Google Scholar 

  • Wu A, Vilarinho PM, Shvartsman VV, Suchaneck G, Kholkin AL (2005) Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology 16:2587–2595

    Article  Google Scholar 

  • Xiang Y, Zhang R, Cao W (2010) Optimization of piezoelectric properties for [001] c poled 0.94Pb(Zn1/3Nb2/3)O3-0.06PbTiO3 single crystals. Appl Phys Lett 96:092902

    Article  Google Scholar 

  • Zgonik M, Bernasconi P, Duelli M, Schlesser R, Gunter P, Garrett MH, Rytz D, Zhu Y, Wu X (1994) Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Phys Rev B 50:5941–5949

    Article  Google Scholar 

  • Zhang XD, Meng XJ, Sun JL, Lin T, Ma JH, Chu JH, Wang N, Dho J (2008) The alternative route of low-temperature preparation of highly oriented lead zirconate titanate thin films by high gas-pressure processing. J Mater Res 23(11):2846–2853

    Article  Google Scholar 

Download references

Acknowledgement

KPJ acknowledges the award of Ciência2007 by FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Jayachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayachandran, K.P., Guedes, J.M. & Rodrigues, H.C. Stochastic optimization of ferroelectric ceramics for piezoelectric applications. Struct Multidisc Optim 44, 199–212 (2011). https://doi.org/10.1007/s00158-011-0626-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0626-y

Keywords

Navigation