Skip to main content
Log in

Effect of NaCl in a nickel electrodeposition on the formation of nickel nanostructure

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This research investigated the fabrication of pillar-type nickel nanostructures by using an electrodeposition solution containing NaCl. When nickel electrodeposition was performed using the NaCl-containing electrodeposition solution, the growth of the electrodeposition structure in the (200) crystal direction was restricted, whereas that in the (111) crystal direction was promoted. Accordingly, when electrodeposition was performed using the NaCl-containing electrodeposition solution, an anisotropic, pillar-shaped electrodeposition structure was formed. A sharper pillar structure was formed with increasing concentration of NaCl added to the electrodeposition solution. Additionally, it was confirmed that a specimen manufactured using electrodeposition solution containing NaCl of 2 M or higher had a superhydrophobic surface after surface treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nosonovsky M, Bhushan B (2007) Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett 7:2633–2637. doi:10.1021/nl071023f

    Article  Google Scholar 

  2. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078. doi:10.1002/adma.200501961

    Article  Google Scholar 

  3. Fang B, Kim JH, Kim M, Yu JS (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21:789–796. doi:10.1021/cm801467y

    Article  Google Scholar 

  4. Launay S, Fedorov AG, Joshi Y, Cao A, Ajayan PM (2006) Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron J 37:1158–1164. doi:10.1016/j.mejo.2005.07.016

    Article  Google Scholar 

  5. Lee JM, Lee SH, Ko JS (2015) Influence of open area ratio on microstructure shape in Cu–Ni alloy electrodeposition. Appl Phys A 118:579–585. doi:10.1007/s00339-014-8759-7

    Article  Google Scholar 

  6. Yoon Y, Kim D, Lee J (2014) Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal. Micro Nano Syst Lett 2:3. doi:10.1186/s40486-014-0003-x

    Article  Google Scholar 

  7. Li L, Chen S, Xu C, Zhao Y, Rudawski NG, Ziegler KJ (2014) Comparing electron recombination via interfacial modifications in dye-sensitized solar cells. ACS Appl Mater Interfaces 6:20978–20984. doi:10.1021/am505742y

    Article  Google Scholar 

  8. Li L, Xu C, Zhao Y, Chen S, Ziegler KJ (2015) Improving performance via blocking layers in dye-sensitized solar cells based on nanowire photoanodes. ACS Appl Mater Interfaces 7:12824–12831. doi:10.1021/acsami.5b02041

    Article  Google Scholar 

  9. Park SH, Lee SH, Yang DY, Kong HJ, Lee KS (2005) Sub regional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Appl Phys Lett 87:54108. doi:10.1063/1.2103393

    Google Scholar 

  10. Lee SM, Jung ID, Ko JS (2008) The effect of the surface wettability of nano protrusions formed on network-type microstructures. J Micromech Microeng 18:125007. doi:10.1088/0960-1317/18/12/125007

    Article  Google Scholar 

  11. Lee CH, Jung PG, Lee SM, Park SH, Shin BS, Kim JH, Hwang KY, Kim KM, Ko JS (2010) Replication of polyethylene nano-micro hierarchical structures using ultrasonic forming. J Micromech Microeng 20:035018. doi:10.1088/0960-1317/20/3/035018

    Article  Google Scholar 

  12. Gu C, Zhang TY (2008) Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir 24:12010–12016. doi:10.1021/la802354n

    Article  Google Scholar 

  13. Lee JM, Bae KM, Jung KK, Jeong JH, Ko JS (2014) Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces. Appl Surf Sci 289:14–20. doi:10.1016/j.apsusc.2013.10.066

    Article  Google Scholar 

  14. Lee JM, Ko JS (2015) Cu–Ni alloy electrodeposition on microstructured surfaces. J Mater Sci 50:393–402. doi:10.1007/s10853-014-8598-0

    Article  Google Scholar 

  15. Deng Y, Ling H, Feng X, Hang T, Li M (2015) Electrodeposition and characterization of copper nanocone structures. CrystEngComm 17:868–876. doi:10.1039/C4CE01993H

    Article  Google Scholar 

  16. Hang T, Li M, Fei Q, Mao D (2008) Characterization of nickel nanocones routed by electrodeposition without any template. Nanotechnology 19:035201. doi:10.1088/0957-4484/19/03/035201

    Article  Google Scholar 

  17. Zhang S, Du Z, Lin R, Jiang T, Liu G, Wu X, Weng D (2010) Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries. Adv Mater 22:5378–5382. doi:10.1002/adma.201003017

    Article  Google Scholar 

  18. Gao S, Chen Z, Hu A, Li M, Qian K (2014) Electrodeposited Ni microcones with a thin Au film bonded with Au wire. J Mater Process Technol 214:326–333. doi:10.1016/j.jmatprotec.2013.09.017

    Article  Google Scholar 

  19. Hang T, Hu A, Ling H, Li M, Mao D (2010) Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl Surf Sci 256:2400–2404. doi:10.1016/j.apsusc.2009.10.074

    Article  Google Scholar 

  20. Hatzor A, Weiss PS (2001) Molecular rulers for scaling down nanostructures. Science 291:1019–1020. doi:10.1126/science.1057553

    Google Scholar 

  21. Sun L, Searson PC, Chien CL (2001) Magnetic anisotropy in prismatic nickel nanowires. Appl Phys Lett 79:4429–4431. doi:10.1063/1.1428113

    Article  Google Scholar 

  22. Mathew A, Munichandraiah N, Rao GM (2009) Synthesis and magnetic studies of flower-like nickel nanocones. Mater Sci Eng, B 158:7–12. doi:10.1016/j.mseb.2008.12.032

    Article  Google Scholar 

  23. Li J, Wang G, Meng Q, Ding C, Jiang H, Fang Y (2014) A biomimetic nano hybrid coating based on the lotus effect and its anti-biofouling behaviors. Appl Surf Sci 315:407–414. doi:10.1016/j.apsusc.2014.07.147

    Article  Google Scholar 

  24. Zhu H, Guo Z, Liu W (2014) Adhesion behaviors on superhydrophobic surfaces. Chem Commun 50:3900–3913. doi:10.1039/C3CC47818A

    Article  Google Scholar 

  25. Liu Z, Li S, Yang Y, Peng S, Hu Z, Qian Y (2003) Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts. Adv Mater 15:1946–1948. doi:10.1002/adma.200305663

    Article  Google Scholar 

  26. Ren Z, Gao PX (2014) A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale 6:9366–9400. doi:10.1039/C4NR00330F

    Article  Google Scholar 

  27. Meng F, Morin SA, Forticaux A, Jin S (2013) Screw dislocation driven growth of nanomaterials. Acc Chem Res 46:1616–1626. doi:10.1021/ar400003q

    Article  Google Scholar 

  28. Wang N, Hang T, Shanmugam S, Li M (2014) Preparation and characterization of nickel–cobalt alloy nanostructures array fabricated by electrodeposition. CrystEngComm 16:6937–6943. doi:10.1039/C4CE00565A

    Article  Google Scholar 

  29. Guan S, Nelson BJ (2005) Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators. J Magn Magn Mater 292:49–58. doi:10.1016/j.jmmm.2004.10.094

    Article  Google Scholar 

  30. Cassie ABD, Baxter S (1945) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. doi:10.1039/TF9444000546

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0019313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Soo Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.M., Jung, K.K. & Ko, J.S. Effect of NaCl in a nickel electrodeposition on the formation of nickel nanostructure. J Mater Sci 51, 3036–3044 (2016). https://doi.org/10.1007/s10853-015-9614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9614-8

Keywords

Navigation